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Abstract

We are attacking the memoy battlened by building a
“smart” memay cortroller that improves effective mem-
ory bandwidth, bus utilization, and cache efficiencyby let-
ting applications dictate how their data is accesgd and
cached Thispaper describs a Parallel Vecta Accesaunit
(PVA), the vecta mamory sulsystemthat efficiently “gath-
ers” spase strided data structuresin parallel on a muti-
bank SDRAV memoy. We have validated our PVA design
via gate-level simuldion, and have evauated its perfor-
mance via fundional simuldion and formd analysis. On
unit-stride vectass, PVA performarceequalsor exceedghat
of an SDRMM systenoptimizedfor cache linefills. Onvec-
tors with larger strides, the PVA is up to 32.8 timesfaster.
Our design is up to 3.3 timesfasterthan a pipelined, serial
DRAM memoy system that gathers sparse vector data,
andthegathering mechanismis two to fivetimesfaster than
in other PVAswith similar goals. Our PVA only slightly in-
creaseshardware compexity with respetto theseother sys-
terrs, and the scalable desgn is appropriate for a range of
computing platforms,from vedor sugercomputers to com-
madity PCs

1. Introduction

Proessa speed areincreasingmuch fasterthanmem-
ory speds,and this disparity preventsmary applicatiors
from making effective use of the tremendus computing
power of modern microprocessrs. In the Impuse project,
we are attackng the memay bottlereck by desigring and
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building a “smart” menory controller [3]. The Impulse
memay systemcansigrificantly improve the peformance
of applications with predictalbe aces patterrs but poor
spatialor tenmporal locality [3]. Impuse supports an op-
tional extra addesstrarslation stag allowing apgications
to control how their datais acesedand cached For in-
stane, on a corvertiond memay system traversirg rows
of a FORTRAN marix wastesbus bandwvidth: the cache
line fills trarsferunneeded dataard evict other usefd data.
Impuse gathers sparse“vecta” elemeits into dersecache
lines, much like the scattefgatheropemtiors sugported by
the load-store units of vectorsupercanputers.

Several new instruction set extersiors (e.g, Intel's
MMX for the Pentium [10], AMD’s 3DNow! for the
K6-2 [1], MIPS’s MDM X [18], Suris VIS for the Ultra-
SFARC [22], ard Motorola’s AltiV ecfor the PoverPC[19])
bring streamandvecta processing to thedomainof deskop
computing. Results for someapgications that use theseex-
tersionsarepromising[21, 23], even though the extensiors
do little to addessmemory system performance Impulse
canboost the bendit of thesevecta extersiors by optimiz-
ing the cache and bus utili zation of spase dataaccesses

In this paper we descrile a vector memay subsys-
temthatimplementsbath convertiond cacheline fills and
vecta-stylescattefgatheroperaticnsefficiently. Our desgn
incomporatesthree conplenmentay optimizatiors for non-
unit stride vectorrequests:

1. Weimprove memory locality viaremapping. Rather
thanperform aseriesof regular cacte linefills for non-
unit stridevectas, our systemgathes only the desred
elementsinto densecachelines.

2. We increase throughput with parallelism. To mit-
igate the relatively high latercy of SDRAM, we op-
eratemultiple barks simultareausly, with componerts
working on indepencdent partsof a vector request. En-
coding mary individual requestsn aconpound vecta
commard enaldes this parallelismand reducescom-
municationwithin the menory controller.
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Figure 1. Memory subsysten oveniew. The corfigurable
remappihg controllers broad@ast “vector command’ to all bark
controllers. The controllers gather data elements from the
SDRAMSs into staging units, from which the vedor is transfered
to the CPU chip.

3. We exploit SDRAM'’s non-uniform access charac-
teristics. We minimize obsened prectarge latercies
ard row acces delaysby ovedappng thesewith other
memay actiity, and by trying to issue vedor refer
ercesin anorderthathits thecurmrert row buffers.

Figure 1 illustrateshow the componentsof the Impulse
memay cortroller interact. A small set of remaping
controllers sugport threetypesof scatter/gthe operatims:
basestride, vedor indired, and marix inversion. Appli-
cationsconfigure the memay controller so thatrequeststo
certain physical address regions trigger scatter/gathe op-
eratiors (inteffaceand programming details are preented
elsevhere[3]). When the processr issuesa load falling
into swch a region, its remaping cortroller seesthe load
and broad@gds the appropriate scattergathervedor com-
mandto all bank cortroller (BC) units via the bank con-
troller bus. In pamllel, eachBC determneswhich pats of
the commandit mustperform locally andthen “gathers”the
correspmding vectorelenmentsinto astagirg unit. Whenall
BCshave fetchedtheir elemetts, they sigral the remappng
cortroller, which constructs the cormplete vecta from the
datain the stagng units. In this way, asinde cacte linefill
canload datafrom a setof spase addessese.g, the row
elemerts of aFORTRAN array.

We validatethe PVA designvia gate-level syrthesisand
simuation, and have evaluatedits performancevia func-
tional simulation andformal analysis. For the kemelswe
study, our PVA-basedmemory systemfills normal (unit
stride) cactle lines as fastas and up to 8% fasterthana
conventianal, cacte-line intedleaved menory systemopti-
mizedfor line fills. For larger strides, it loads elenmentsup

to 32.8 timesfasterthan the conventional memay system.
Our systemis up to 3.3 times fager thana pipelined, cen-

tralized menory acces unit that gathersspase vecta data
by issuirg (upto) one SDRAM acces percycle. Conpared
to othe paallel vectoraccesaunits with similar goals[5],

gatheroperaionsaretwo to five timesfaster. Thisimproved
parallelaccess algorithm only modesty increasesardvare
complexity. By localizing all architectual changeswithin

the menory contraler, we recuire no modifications to the
procesa, systembus, or on-chip memay hierachy. This

scalalke sdution is apgi cableto arange of computing plat-
forms, from vector compuers with DRAM menories to

commodity persoral computers.

2. Related Work

We limit our discussiorto work that addresesloadng
vectas from DRAM. Moyer definesacess scheduing ard
accessorderingto be techriquesthat reduceload/stoe in-
ted ock delaysby overlaping conputationwith memay la-
tercy, ard thatchange the order of menory requeststo in-
creaseperformarce, resgectively. [20]. Access schaluling
attenpts to separate the execution of a load'store instruc-
tion from thatof the instruction that produces/casurresits
operand therely reducing the processr’s obsened mem-
ory delays. Moyer applies both conceptsto compiler al-
gorithmsthatoptimize innerloops, unrolling and grouping
streamacessesto anortize the costof eachDRAM page
missover severd referercesto the open page

Leemimics Cray instructions on the Intel i860XR using
arother sdtware approach, treatirg the cace asa pseuw
“vecta register’ by readng vectorelementsin blocks (us-
ing non-cachirg loads) and then writing them to a pre-
allocatedportion of cacle [11]. Loadng asinde vectorvia
Moyer's andLee’s scheneson aniPSC/86) nodeimproves
performance by 40-450%, deperting onthestride [15].

Valeroet al. dynamically avoid bank conflicts in vedor
processas by accesng vector elemants out of order. They
aralyze this systemfirst for sinde vectos [24], and then
extend the desgn to multiple vedors[25]. del Coral ard
Llaberia aralyze a relatedhardvare scheme for avoiding
bank conflicts among multiple vectas in complex meno-
ries [7]. Theseschenesfocus on vecta computers with
(uniform accesstime) SRAM memay compaents.

The PVA comporentpreserted herin is similar to Cor-
bal et al.'s CommandVecta Memay System[6] (CVMS),
which exploits parallelism and locality of refererce to
improve effective bandvidth for out-of-order vecta pro-
cessos with dual-banked SDRAM memaies. Instead
of serding individual requeststo individud devices, the
CVMS broactastscommands requestingmultiple indepen-
dentwords, a desgn ideawe adopt. Sectioncontrollersre-
ceivethe broadcastsgompute sutconmmardsfor the portion



of the datafor which they arerespamsible,and thenissue
the addessedo SDRAMSs under their control. The mem-
ory sulsystemorders requests to eachdual-banked device,
attempting to overlapprechargesto each interral bankwith
accesss to the other Simulation reaults denmonstrae per
formarceimprovementsof 15-54% over a serialcortroller.
Our bank controllers behaviorally resemlbe CVMS section
cortrollers, but our hardware design ard parallelacessal-
gorithm (seeSectim 4.3) differ substantially

The Stream Memay Controller (SMC) of McKee
et al. [14] combines programmadle stream buffers and
prefetchirg in amenory cortroller with intelligent DRAM
schedding. Vecta databypassthe caclein this system,but
the underlying access-a@lering concepts canbe adaptedto
systens that cacte vectors. The SMC dynamicallyreaders
stream/vector accesss and issuesthem serially to exploit:
a) parallelismaciossdual banks of fagd-page mode DRAM,
andb) locality of referencewithin DRAM pagebuffers. For
most alignments andstrideson uniprocessorsystems, sim-
ple ordeling schemes perform conpetitively with sophisti-
catedones [13].

Streamdetedion is an important designissie for these
systens. At one erd of the spectum, the apgi cation pro-
grammermay berequired to idertify vectas,asis currently
the casean Impulse. Alternatively, thecompiler canidertify
vecta accesseandspecify them to the memay cortraller,
an approachwe are pursuirg. For instarce, Benitezand
Davidsonpresent simple and efficient compil er algaithms
(whaose complexity is similar to strergth reduction) to de-
ted andoptimize streans [2]. Vectaizing compilers can
alsoprovide the nealedvector paranetes, ard can perform
extersive loop restricturing and optimizationto maximize
vecta pefformarce[26]. At the other end of the spectum
lie hadware vecta or streanmdetectionsclemesasin refer
encepredction tades[4]. Any of thesesufficesto provide
the information Impulseneedsto geneatevectoracesses.

3. Mathematical Foundations

The Impulse remaping cortroller gathes strided data
structuresby broadcasing vectorcommandsto asetof bank
cortrollers (BCs), eachof which determinesindepencently
and in tardemwith the otherswhich elemerts of the vector
residein the SDRAM it marages.This broaccastapproach
is patentially much more efficient thanthe straightforward
aternaive of having a centrdized vector cortroller issue
the streamof elenmentaddresses,one per cycle. Realizing
this performarce patentialrequresa mettod wherebyeach
bark contraler candgermire theaddessesf the elements
that resideon its SDRAM without sequentially expandng
the entire vecta. The primary advartage of our PVA mech-
anismover similar desigrs is the efficiency of our hardware
algorithms for computing eachbanKs subvedaor.

We first introduce the tetmindlogy usedin describing
these algorithms. Base-strié vector operatiors are repre-
sente by atuple, V =< B,S,L >, whereV.B is the
basadlress, V.S thesequencestride,ard V. L thesequence
length. We referto V'’s i*" demert as V[i]. For exam-
ple, < A,4,5 > designatesvector elenents A[0], A[4],
... A[16]. Thenumberof barks, M, is a power of two. The
PVA algaithm is basedon two functions:

1. FirstHit(V,b) takesavector V ard abankd andretuns
either the index of thefirst element of V' that hits in b
or avalue indicating that no suc elenmentexists.

2. NextHit(S) returns anincrenert § such tha if a bark
holdsV[n], it alsohdds V'[n + 4].

Spaceconsideratins only permt a simgified explara-
tion here. Our techrical report cortains conplete mathe-
maticaldetails[12]. FirstHit() andfirst addresscalcuation
togethrer canbe evaluatedin two cycles for power of two
stridesard at mostfive cyclesfor other strides. Theirdesign
is scalableand can be implementedin a variety of ways.
This paper hencebrth assimesthat they are implemened
asaprogranmalle logic array (PLA). NextHit() is trivial to
implement, and takesonly afew gatedelaysto evaluate.

Giveninputsb, M, V.S mod M, ard V.BmodM , each
bank controller usesthesefunctions to indeperdertly de-
teminethe sub-vectorelemerts for which it is resposible.
The BC for bark b pefformsthe following operatians (con-
currently, wherepossible):

1. calcdatei=FirstHit(V,b); if NoHit, cortinue.

2. whilei < V.L do
aces memay locaionV.B +i x V.S
i += NextHit(V.S)

4. Vector Access Unit

Thedesig spacefor aPVA mechaismis enamous: the
typeof DRAM, numberof barks, interleave facta, andim-
plemertation strateyy for FirstHit() can be vared to trade
hardvarecomplexity for perfformance.For instarce,lower
cost soluionsmight let asetof banks shae bankcontrollers
ard BC buses multiplexing the use of theseresources. To
demanstratethe feasibility of our approach ard to detive
timing and hadware complexity estimateswe developed
ard syrnthesizeda Verilog model of one design paint in this
large space. The implementatian uses 16 barks of word-
interleaved SDRAM (32-bit wide). Each hasa dedcated
bank contradler that drives 256 Mbit 16-bit wide Micron
SDRAM parts,eachof which contairs four internd banks
[17]. Thecurrent PVA designassunesanL?2 cacte line of
128 bytes andtherfore operateson vecta commands of



32 single-word elemants. We first describeheimplementa-
tion of the bank-contraller bus ard the BCs, ard then show
how thecortrollers work in tancem.

41 Bank Controller Bus

As illustratedin Figure 1, the bank contrallers commu-
nicatewith the restof the memay contrdler via a shaed,
sdit-transadion bus (BC bus)thatmultiplexes reqiestsand
data. During a vecta requestcycle, ead bus supports a
32-bit address, 32-bit stride, three-hit transactia 1D, two-
bit command ard some contra informatian. During a data
cycle, each supports 64 daa bits. The currert PVA design
targetsa MIPS R10000 processomwith a 64-hit systembus,
on which the PVA unit can sendor recéve one dataword
percycle. No intermedate unit is neeledto meigedatacol-
lected by multiple BCs: when readdatais returned to the
processr, the BCstake turnsdriving their part of thecacte
line onto the system bus. Electrical limitations require a
turn-arourd cycle wherever bus ownershipcharges, but to
avoid thesedelaycycles,we usea 128-bit BC busard drive
alternae 64-bit halvesevery otherdatacycle. In addition to
the 128 multiplexedlines,the BC busincludeseight shared
transadion-competeindication lines.

4.2 Bank Controllers

For a given vedor reador write commard, eachBank
Contrdler (BC) isrespmsiblefor idertifying and accessing
the (possiblynull) subvectorthatresicesin its bark. Shown
in Figure 2, the architedure of this componentconsistsof:

1. a FirstHit Predicta to determnes whetter elements
of agivenvector request hit this bank. If thereisa hit
ard the strideis a power of two, this subcormponert
performstheFirstHit addresscalcuation;

2. aRequestFIFO to quelwe vectorrequests for sewice;

3. a Raister File to provide storage for the Reqlest
FIFO;

4. aFirstHit Calcuate module to detemine the addess
of the first elemert hitting this bark whenthe stride is
not a power of two;

5. anAccessscheduer to drive the SDRAM, reordeling
read,write, bark adivateand prechaige operaionsto
maximize performane;

6. aset of Vecta Contexts within the AccessScheduler
to represemthecurert vectorrequests;

7. a Sheaduing Policy Module within each Vecta Con-
text to dictate the scheduling policy; and

8. a Saging Unit that corsistsof (i) a Read Saging Unit
to store readdatawaiting to be assemled into a cacle
line, and (i) a Write Staging Unit to stoe write-data
waiting to be sentto the SDRAM s.

We briefly descrite eachof thesesubcomporerts. Esen-
tial to efficient operatian are several bypass pahs that re-
duce communication lateng/ within the BC. Our techical
repat flestesout detailsof thesemodules ard their interac-
tions [12]. The main modules of the BC managp the com-
putations required for parallel vector accessthe efficient
schaluling of SDRAM, ard the datastagiry.

421 Parallelizing Logic

The parallelizing logic consids of the FirstHit Predict
(FHP) module, the ReqlestFIFO (RQF), the RegisterFile
(RF), ard the FirstHit Calcdate (FHC) modules. The FHP
module watches vectorrequestson the BC bus and deter
mineswhetheror not ary elemrentof a requestwill hit the
bank The FHP calcuatesthe FirstHit index, the index
of thefirst vecta elenentin the bank For power-of-two
stridesthathit, the FHP also calculats the FirstHit address,
the bark addessof the first elenment. The FHPthensigrals
the RQFto queLe: thereqlestsV =< B, S, L > tuple;the
FirstHit index; the calculatedbank address if ready ard
an addresscalculation compete (ACC) flag indicating the
statusof the bankaddress field.

The RF subcamponent contairs asmany entiies asthe
number of outstaming transactias permitted by the BC
bus, which is eight in thisimplemenation The RQFmod-
ule implemerts the state machine and tail pointer to man-
tain the RF asa quele, stoling vector requests in the RF
ertriesuntil thoserequestsare assgned to vectorcortexts.
Queuedrequestswith a clearel ACC flag require further
processing: the FHC module computes the FirstHit ad-
dressfor theserequests,whaose stride is not a power of
two. The FHC scans the requestsbetween the quele head
pointer, which it mairtains, andthe tail pointer, multiply-
ing thestride S by theFirstHitindex calculatedby theFHR,
ard then addng that to the baseaddress B to geneatethe
FirstHit addess.The FHC thenwritesthis addessinto the
registerfile ard setsthe entrys ACC flag. Since this cal-
culation requires a multiply and add, it incurs a two-cycle
delay, butthe FHC worksin parallelwith the AccessScheal-
uler (SCHED) so when thelattermodule is busy, this delay
is comgetely hidden. Whenthe SCHED seeghe ACC bit
setfor the ertry atthe headof the RQF it knows that there
is avecta requestrealy for issue.

4.2.2 Access Scheduler

The SCHED and its sulzomponerts, the Vedor Cortexts
(VCs) and Schedding Policy Unit (SPU)modules, are re-
spmsiblefor: (i) expanding the seresof addresgsin avec-
tor request, (i) ordering the streamof reads, writes, bark
activates,and prechamges so that multiple vecta requests
canbeissuedoptimally, (iii) making row adivate/gpecharge
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Figure 2. Bank cortroller internd orgarization

decisiors, and (iv) driving the SDRAM. The SCHEDmod-
ule deddeswhento keg an SDRAM row open, ard the
SPUswithin the SCHED’s VCsreordertheaccesses

The currentdesign cortainsfour VCs, eachof which can
hold a vecta reques whoseaccesss are readyto beissued
tothe SDRAM. The VC performs aseriesof shiftsand adds
to geneate the sequenceof addressesrequired to fetcha
particdar vecta. Thesesfficient calculatins constitutethe
crux of our PVA approach, and our techicalreport explains
their details.The VCs sharethe SCHEDdatagath,andthey
cooperdeto issuethe highestpriority pending SDRAM op-
erationrequred by ary VC. The VCs arhitratefor this dat-
apathsuch thatat mostone can acess it in ary cycle, and
the oldest perding operation has higheg priority. Vector
operatiors areinjectedinto VC_0, ard wherever one com-
pletes(at most onefinishesper cycle), other pendng oper
ations“shift right” into the next freeVC. To give the oldest
perding operatia priority, we dasy-chain the SCHEDre-
questsfromVC_N to VC_0 sud thatalower nunberedVC
canplae arequeston the shaed datapah if andonly if no
higher numbeedVC wishesto do so.

The VCs attemp to minimize prechalge overhead
by giving accesss that hit in an open internd bank
priority over reqleststo a different intermal bark on
the same SDRAM module. Three lines per inter-
nal bark — bank_hit_predict bank more_hit_predct, and
bank_close_predct — coordinate this opemation  The
SCHEDbroadcastdo the VCsthethe current row addesses

of the openinterral banks. Whena VC deteminesthatit
hasa pendng requestthat would hit anopen row, it drives
the internal bank’'s shaed line to tell the SCHED not to
close the row — in other words, we implemen awired OR
opemtion Likewise,VCs thathave a perding request that
missesn the internd bank use the bank_closepredct line
to tell the SCHED to closethe row. The SPUswithin each
of the VCs dedde together which VC canissuean oper-
ation during the current cycle. This decision is basedon
their cdlective stateas obsened on the bank hit_predct,
bank_more_hit_predct, andbank_ closepredict lines. Sep-
arate SPUsare used to isolate the schediling heuristics
within thesubcamponents permitting experimentation with
the schediling policy without changng therestof theBC.

The schedding algaithm strives to improve perfor-
manceby maximizing row hits ard hiding latenges; it does
this by operatirg otherintemal barks while a givenintemal
bankis being openedor prectaged We implemert a pol-
icy that promotesrow opers and prechamgesabove real ard
write opematiors, aslong asthe former do nat conflict with
the openrows in useby arother VC. This heuristic opers
rows aseaty aspossible.Whencorflicts or open/pecharge
laterciesprevert highernumberedVCs from issuirg aread
or write, a lower priority VC may issLe its readsor writes.
The policy ersuresthat whenanolder requestconpletes,a
new reqestwill be ready, even if the new oneusesadiffer-
ert intemal bark. Details of the schedling agorithm are
given in our techrical report [12].



4.2.3 Staging Units

The Stagirg Units (SU9 store data retuned by the
SDRAMsfor aVC-generatedreadoperatian or provided by
the menory contrdler for awrite. In the case of agathered
vecta readoperatian, the SUson the participaing BCs co-
operateto merge vectorelermrentsinto acadelineto besert
to themenory contrdler front end, asdescibedin Section
4.1. In the cese of a scatered vecta write operatian, the
SUsat eachparticipating BC buffer the write datasent by
the front erd.

The SUsdrive atransaction_completeline on the BC bus
to signd the completion of apendng vector operation This
line ads as a wired OR that deassertsvhenever all BCs
have finisheda particlar gahered vecta reador scattered
vecta write operation When the line goeslow during a
read the memay contrdler issuesa STAGE_READ com-
mand on the vedor bus, indicating which pendng vector
readoperatian’s datais to be read. Whenthe line goeslow
during awrite, thememay contraler knows thatthe corre-
sponding datahasbeencommitted to SDRAM.

424 DataHazards

Readeing read and writes may violate corsistercy se-
mantics.To maintainaccepablecorsistercy semartics and
to avoid turnamound cycles, the following restriction is re-
quired: aVC mayissuearead/wite only if the bus hasthe
sane polarity and no pdarity reversalshave occuredin ary
precedirg (older) VC. The gist of thisrule is tha elements
of different vectas may be issued out-of-order aslong as
they arenot sepaatedby arequestof the opposite polarity.
This pdlicy givesriseto two important corsigercy seman-
tics. First, RAW hazards camat hapen. Secom, WAW
hazads may hapgen if two vedor write requests not sep-
aratedby a readhappen to write differert datato the same
location We asaimethatthelatterevert is unlikely to occur
in auniprocessormachire. If the L2 cachehasawrite-back
andwrite-dlocatepolicy, thenany consective writesto the
sane locationwill be sepaatedby aread. If strictercon-
sisteny sematics are required a cormpiler can be madeto
issuea dummy readto separae thetwo writes.

4.3 Timing Considerations

SDRAMSs definetiming restrictios on the seqenc of
operatiors that canlegally be perfformed. To mantain these
restrictiors, we use a set of small counters calledrestimes,
eachof which erforcesonetiming parameterby asseting a
“resouceavailabe” line whenthe corespading operation
is permtted. The cortrol logic of the VC window works
like a scoreboardand ensuesthat all timing restridionsare
met by letting a VC issue an operaion only when all the

Access Pattern

Kernel ]

copy for (i=0; i<LxS; i+=S)
ylil=x[il];

saxpy for (i=0; i<LxS; i+=S)
y[i] += a x x[i];

scale for (i=0; i<LxS; i+=9)
x[i]l=a x x[i];

swap for (i=0; i<LxS; i+=S)
{reg=x[i]; x[i]l=y[i]; y[i]=reg;}

tridiag | for (i=0; i<LxS; i+=S)
x[i]=z[i] x(y[i]-x[i-1]);

vaxpy for (i=0; i<LxS; i+=S)
ylil+=a[i] x x[i];

Table 1. Inner loopsusedto evaluae our PVA unit desgn.

reourcesit needs — including therestimersard the datep-
ath— canbe acqured. Electrical consideatiors requre a
one-<ycle bus turnaround delaywhenever the bus padarity
is reversed,i.e., whenareadis immediately followed by a
write or vice-versa. The SCHEDunits attemp to minimize
turnaround cyclesby reordeling accesses.

5. Experimental M ethodology

This sectiondescribes the details and ratiorale of how
we evaluate the PVA design The initial prototype uses
a word-intedeaved organization, since block-interleaving
complicatesaddress arithmetic and increaseshe hardvare
complexity of the memory cortroller. Our design canbe
exterdedfor block-intedeaved menories, but we have yet
to perform price/performance analysesof this designspace.
Note tha Hsu and Smith study intedeaving sclemesfor
fast-mage mode DRAM memaies in vedor machines[9],
finding cadhedine interleaving andblock intedeaving supe-
rior to low-order interleaving for mary vectorapplications.
The systems they examine peiform no dynamic access or-
dering to increaselocality, though, and their resultsthus
favor organizatiors that increasespatial locality within the
DRAM page buffers. It remairs to be seen whether low-
order intedeaving becanesmaore attractive in conjunction
with acces®rderingard scheduling techiques,but our ini-
tial reaults areencairaging.

Table 1 lists the kemelsusedto gererae the resuts pre-
sente here. copy, saxpy andscal e arefromthe BLAS
(BasicLinear Algebra Subprograms) berchmark suite[8],
ard tri di ag is a tridiagonal gaussian elimination frag-
ment, the fifth Livermore Loop [16]. vaxpy dendesa
“vecta axpy” opemtionthatocaursin matrix-vectormulti-
pli cationby diagonds. We chooseloop kemelsoverwhale-
program berchmarks for this initial study becawse: (i) our
PVA schedler only speeds up vector acesses,(ii) kerrels
allow usto examire the peformanceof our PVA mectla-
nism over a larger experimentaldesignspae,ard (iii) ker
nelsare smalleroughto pemit the detailed gate-level sim-
ulations requiredto validatethe designard to derive timing



[ Type [ Count ]

AND2 1193
D FLIP-FLOP 1039
D Latch 32
INV 1627
MUX2 183
NAND2 5488
NOR2 843
OR2 194
XOR2 500
PULLDOWN 13
TRISTATE BUFFER 1849
On-chip RAM 2K bytes

Table 2. Complexity of thesynhesized bark controller.

estimates Perbrmarce on larger, realworld berchmarks
— via functional simulation of the whole Impulse system
or performanceanalysis of the hardware prototype we are
building — will be necessaryo denonstratethefinal proof
of conceptfor the design preserted here, but theseresults
are not yet available.

Recall thatthe busmodelwetargetallowsonly eight out-
starding trarsadions. This limit preverts usfromunradling
most of our loops to group multiple commands to a given
vecta, but we examine performance for this optimization
on the two kemelsthat accessonly two vectors,copy and
scal e. In our experiments,we vary bath the vectorstride
and the relative vector alignments (placenent of the base
addres®s within memory banks, within intemal banks for
agiven SDRAM, andwithin rows or pagesfor a givenin-
temalbank). All vectos are 1024 elemerts (32 cachelines)
long, and the stridesare equal throughout a givenloop. In
all, we have evalugedPVA performance for 240 datapoints
(eight acess patterrs x six strides x five relative vector
alignments)for eachof four different menory systemmaod-
els. We present highlights of theseresultsin the following
sectim; detailsmaybe found in our techrical repat [12].

6. Results

This sectionpreentstiming and comgexity resutsfrom
synthesizing the PVA and conparative performance results
for our sute of benchmak kerrels

6.1 SynthesisResults

Our erd goal is to fabricatea CMOS ASIC of the Im-
pulsememay contrdler, but we arefirst validating pieces
of the largerdesignusing FPGA (field programnmablegae
array) tecmology. We produce an FPGA implemertation
on an IKOSHemesenulata with 64 Xi-4000 FPGAs,and
then use this implemenation to derive timing estimates
The PVA's Veiilog description consistsof 3600 lines of
code. The typesand numbers of componentsin the syn-
thesizedbank controller are given in Talde 2. We expect

that the custom CMOS implemertation to be much more
efficientthanthe FPGAimplementdion.

We used the synthesized desiqn to measue delay
through the critical path— the multiply-and-add circuit re-
quired to calcuate FirstHit() for non-power-of-two strides.
Our multiply-and-addunit hasa dday of 29.5ns. We expect
that an optimized CMOS implementationwill have a delay
lessthan 20ns, making it possble to complete this opera-
tion in two cycles at 100MHz. Otherpaths are fastenaigh
to operateat 100MHz even in the FPGA implementatian.
The FHP unit hasa delayof 8.3nsand SCHEDhas a delay
of 9.3ns. CMOS timing consideartiors are very different
from thosefor FPGAs ard thus the optimization strategies
differ sigrificantly. TheseFPGA delays represent anupper
bound — the custon CMOSversian will be muchfaster

6.2 Performance Results

We compare the performarce of the PVA functional
model to threeother memay systemsFigure 3(a)-(c) show
the comparative peiformarce for our four memay models
on strides1, 2, 4, 8, 16, and 19 for the copy, swap, ard
vaxpy kemels,andFigure 3(d)-(f) shav comparative per-
formane aaossall bendmaksfor strides1, 4, and16. The
amotations above eachbar indicateexecuion time normal-
izedto the minimum PVA SDRAM cycle time for eachac-
cesspattern Barsthat would be off the y scalearedrawn
atthe maximumy value ard amotatedwith the actual num-
ber of cyclesspen. The setsof bas labeled“copy2” ard
“scale? represent unrolled kerrelsin which readandwrite
vecta commardsaregrouped(so thePVA seestwo consec-
utive vectorcommardsfor the first vector thentwo for the
secand, and so on). This optimization only improvesperfor-
mancefor the PVA SDRAM systens, yielding a slight ad-
vantag over the unoptimized versims of the samebend-
mark. If more outstarding transadions were allowed on
the processr bus, greaterunrolling would deliver larger im-
provemerts.

Thebarslabded “cacheline interleavedseial SDRAM”
model the badk erd of an idealized, 16-modue SDRAM
systemoptimized for cacheline fills. The menory busis
64 bits, ard L2 cacle linesare 128 bytes. The SDRAMs
modeledrequire two cycles for each of RAS andCAS, ard
are camble of 16-cycle bursts. We optimistically assime
that prechage laterciescanbe overdapped with activity on
other SDRAM s (and we ignore the fact that writing lines
takesdlightly less time thanreadim), thus eachcacte line
fill takes 20 cycles(two for RAS, two for CAS, and 16 for
the databurst). Thenumber of caclelinesacesgeddepends
on thelengthand stride of thevedors; this system makesno
attenpt to gathe spasedaa within the menory controller.

The bars labeled “gatheaing pipelined serial SDRAM”
model the bak end of a 16-module, word-interleaved
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SDRAM system with a closedpage policy and pipelined
precharge. As before, the memay busis 64 bits, ard vedor
commands acces82 elemeants (128 bytes,sincethe present
systemuses4-byte elenents). Instead of pefforming cache
line fills, this systemaccessesachvecta elenentindivid-
ually. Although accesesareissuel serially, we assune that
the memory cortroller can overlapRAS latercieswith ac-
tivity on other banks for all but the first elemen accessed
by eachcommand We optimistically assime tha vec-
tor commands never crossDRAM pages,and thusDRAM
pagesareleft openduring the procesing of eachcommard.
Pretage costs areincurred at the beginning of eachvec-
tor command This systemrequiresmore cyclesto access
unit-stride vectorsthanthecadeline interlearedsystemwe
model, but becauwse it only accessethe dedred vecta el-
ements, its relaive peiformarce increaes dramatically as
vecta stride goesup.

Thebarslabded “min parallel vectoraccesSRAM” ard
“max parallelvectoraccessSRAM” model thepeformance
of anidealizedSRAM vector memay systemwith the same
parallel acess schene but with no prechage or RAS la-
tercies.Conpaiing PVA SDRAM ard PVA SRAM system
performanesgivesa measue of how well our systemhides
the extra latenciesassociaté with dynanmic RAM.

For unit-stride accesgatterrs (derse vectas or cacle-
line fills), the PVA pefformsabaut the same asa cacheline
interleaved systemthat performs only line fills. As shavn
in Figure 3, normalizedexecaution time for the lattersystem
is between100% (for copy andscal e) and 108% (for
copy2, andscal e2, vaxpy, swap) of the PVA's min-
imum execuion time for our kerrels. As stride increaes,
the relative pelformarce of the cacle-line interleared sys-
tem falls off rapidy: at stride four, normalized execttion
time risesto between307% (for scal e) and 408% (for
vaxpy) of the PVA systems, ard at stride 16, normal-
ized executian time reaches1112% (for tri di ag). Fig-
ure 3(a), (b), ard (c) demmstratethat performance shaws
similar trerds for eachbenchmark kerrel. Figure 3(d), (e),
ard (f) shav performancetrends for a given vectorstride.
Figure 4 shows performarce reallts for vectas with large
stridesthat still hit all thememay barks. Perfamances for
both our SDRAM PVA system ard the SRAM PVA sys-
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temfor stride 19 are similar to the corespnding resultsfor
unit-stride accesgatterrs. In contrast, the serialgatheing
SDRAM ard the cacte-line interleaved systens yield per
formarcesmuch more lik e thase for stride 16.

Sone relaive vector alignmerts aremore advantageols
than others, as evidercedby the variations in the SDRAM
PVA perfformarcein Figure 5(b). The SRAM versionof the
PVA systemin Figure 5(a) shows similar trerdsfor the var-
ious comhinations of vedor stride andrelative alignmerts,
although its performance is slightly more robust. For small
stridestha hit more thantwo SDRAM banks, theminimum
and maxmum execution times for the PVA system differ
only by a few percert. For stridesthat hit one or two of
the SDRAM componerts, though, relative alignmenthasa
largerimpad on overall exeautiontime.

The reslts highlighted here arerepresetative of those
for all our experiments [12]. On dersedata,the SDRAM
PVA peaformslikean SDRAM system optimizedfor cache-
linefills. In gereral,it performs muchlike anSRAM vector
memay systemat a fraction of the cost.

7. Discussion

In this paper, we have de<ribed the designof a Paral-
lel Vecta Accesaunit (PVA) for thelmpulsesmartmemay
cortroller. The PVA enploys a novel paiallel accessalgo-
rithm that allows a cdlection of bark controllers to deter

mine in tanrdemwhich patts of a vedor commard arelo-

catedon ther SDRAMs. The BCs optimize low-level ac-
cessto thar SDRAMsto maxmize thefrequency of open-

row hitsand overlapaacesgsto indeperert barks as much

as possible. As a reallt, the Impulse menory controller

always performs no worse than 1% slower (and up to 8%

fastej thana menory systemoptimized for normd cache
line fills on unit-stride accesseskor vecta-style acesegs,
the PVA deliversdataupto 32.8 timesfader thana conven-

tional menory controller ard up to 3.3 timesfaser thanal-

temative vecta aaessunits, for amoded increa® in had-

ware conplexity. We areintegratingthe PVA into the full

Impuse simdation ervironment, so tha we can evaluate
the performanceimprovementsacrosswhole appli catiors.

Space limitations prevent us from fully addressng a
number of importart feauresof the PVA, including scala-
bility, interoperabl ity with virtual memay, andtechriques
for optimizing other kinds of scater-gathe operations. Ul-
timately, the scalalility of our memory systemdeperdson
the implementation chdce of FirstHit(). For systens that
use a PLA to compute the firsthit index, the conplexity of
the PLA grows with the square of the number of barks,
which limits the effective size of such a designto araund
16 banks. For systemswith a smdl numbe of banks in-
tedeaved at block-size N, replicating the FirstHit() logic
N timesin ead BC is optimal. For very large memay
systens, regardlessof their interleave factor it is bestto
implement aPLA to calculatethe successie vecta indices
within a bark. The conplexity of this PLA increases ap-
proximatdy linealy with the number of banks, the restof
the hadware remains uncharged, and the performarce is
constar, irregpective of the number of barks.

Another design isste is how to hande “contiguous” data
spreadacossdisjoint physicalpages.If stridedvectasspan
multiple pages, addtiond address trarslation logic is re-
quired in the BCs. In the currert evaluation, we assune the
databeing gatheed into eachdensecacheline falls within
a singe pace or suwpempage of physical menory. Working
aroundthe limitationsof pagedvirtual memay is discussed
in our technical report [12].

Finally, the PVA descibedhere canbe extendedto han-
dle vectorindirect scattergather operatiors by performing
the gather in two phases: (i) loading the indirection vec-
tor into the BCs ard then (ii) loadng the vecta elenens.
Thefirst phases simgy aunit-stride vedor loadoperatian.
After the indirection vecta is loaded its contents canbe
broadcastacrossthe BC bus. Ead BC deternineswhich el-
ementsresidein its SDRAM by sroopingthisbroadcat ard
performing a simple bit-mask operationon eachaddress.
Then eachBC peforms its part of the gathe in parallel,
ard theresultarecoalesced from the stadgng unitsin much
the sameway asfor stridedacesses,



In sunmaty, we have presered the designof a Paral-
lel Vedor Accessunit thatshows greatpromise for provid-
ing apdicationswith poor locality with vecta-machire-like
memay performance. Although much work remairs to be
done, our expetienceto dateindicateshatsud asystemcan
significartly reducethe memory battleneckfor the kinds of
applications that suffer on corventional menory systens.
The next stepsareto evaluatethe PVA desig on a suite of
whole-programberchmarks and to addressthe issuesraised
above, particulady the interadion with virtual menory and
supporting other scattergather operatians.
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