
Design of a Parallel Vector Access Unit for SDRAM Memory Systems

Binu K. Mathew, Sally A. McKee, JohnB. Carter, Al Davis
Departmentof ComputerScience

University of Utah
SaltLakeCity, UT 84112�

mbinu sam retrac ald � @cs.utah.edu

Abstract

We are attacking the memory bottleneck by building a
“smart” memory controller that improveseffective mem-
ory bandwidth, busutilization, and cache efficiencyby let-
ting applications dictate how their data is accessed and
cached. Thispaper describes a ParallelVector Accessunit
(PVA), the vector memorysubsystemthat efficiently “gath-
ers” sparse, strideddata structuresin parallel on a multi-
bank SDRAM memory. We havevalidatedour PVA design
via gate-level simulation, and have evaluated its perfor-
mance via functional simulation and formal analysis. On
unit-stridevectors,PVAperformanceequalsor exceedsthat
of an SDRAM systemoptimizedfor cache line fills. Onvec-
tors with larger strides, the PVA is up to 32.8 timesfaster.
Our design is up to 3.3 timesfasterthan a pipelined,serial
SDRAM memory system that gathers sparse vector data,
andthegathering mechanismis two to fivetimesfaster than
in otherPVAswith similar goals. Our PVA only slightly in-
creaseshardwarecomplexitywith respect to theseothersys-
tems, and thescalable design is appropriate for a range of
computing platforms,from vector supercomputers to com-
modity PCs.

1. Introduction

Processor speeds areincreasingmuch fasterthanmem-
ory speeds,and this disparity preventsmany applications
from making effective use of the tremendous computing
power of modernmicroprocessors. In the Impulseproject,
we areattacking the memory bottleneck by designing and

This effort wassponsoredin part by the Defense Advanced Research
ProjectsAgency (DARPA) and theAir ForceResearchLaboratory (AFRL)
under agreement number F30602-98-1-0101 and DARPA Order Numbers
F393/00-01andF376/00. Theviewsandconclusionscontained herein are
thoseof the authors and should not be interpreted as necessarily repre-
senting theofficial policesor endorsements,either expressor implied,of
DARPA, AFRL, or theUSGovernment.

building a “smart” memory controller [3]. The Impulse
memory systemcansignificantly improve theperformance
of applications with predictable access patterns but poor
spatialor temporal locality [3]. Impulse supports an op-
tional extra addresstranslation stage allowing applications
to control how their data is accessedandcached. For in-
stance, on a conventional memory system,traversing rows
of a FORTRAN matrix wastesbus bandwidth: the cache
line fills transferunneededdataand evict other useful data.
Impulsegatherssparse“vector” elements into densecache
lines, much like the scatter/gatheroperations supportedby
the load-store unitsof vectorsupercomputers.

Several new instruction set extensions (e.g., Intel’s
MMX for the Pentium [10], AMD’ s 3DNow! for the
K6-2 [1], MIPS’s MDMX [18], Sun’s VIS for the Ultra-
SPARC [22], and Motorola’sAltiVecfor thePowerPC[19])
bring streamandvector processing to thedomainof desktop
computing. Results for someapplications thatusetheseex-
tensionsarepromising[21, 23], even though theextensions
do little to addressmemory system performance. Impulse
canboost the benefit of thesevector extensionsby optimiz-
ing the cacheandbusutili zationof sparsedataaccesses.

In this paper we describe a vector memory subsys-
temthat implementsboth conventional cacheline fills and
vector-stylescatter/gatheroperationsefficiently. Our design
incorporatesthree complementary optimizations for non-
unit stride vectorrequests:

1. We improve memory locality via remapping. Rather
thanperform aseriesof regularcachelinefills for non-
unit stridevectors,our systemgathersonly thedesired
elementsinto densecachelines.

2. We increase throughput with parallelism. To mit-
igate the relatively high latency of SDRAM, we op-
eratemultiple banks simultaneously, with components
working on independentpartsof a vector request.En-
coding many individual requestsin acompound vector
command enables this parallelismand reducescom-
municationwithin thememory controller.

1

Controller
Bank

Controller
Bank

Controller
Bank

Controller
Bank

Bank
DRAM

Bank
DRAM

Bank
DRAM

Bank
DRAM

Controller

Remapping

Conventional
Fetch Unit

Bus

System

...
b

an
k

co
n

tr
o

lle
r

b
u

s

VECTOR ACCESS UNIT

IMPULSE ADAPTABLE MEMORY CONTROLLER

Figure 1. Memory subsystem overview. The configurable

remapping controllers broadcast “vector commands” to all bank

controllers. The controllers gather data elements from the

SDRAMs into staging units, from which the vector is transferred

to theCPU chip.

3. We exploit SDRAM’s non-uniform access charac-
teristics. We minimize observed precharge latencies
and row accessdelaysby overlapping thesewith other
memory activity, andby trying to issue vector refer-
encesin anorderthathits thecurrent row buffers.

Figure 1 illustrateshow the componentsof the Impulse
memory controller interact. A small set of remapping
controllers support threetypesof scatter/gather operations:
base-stride, vector indirect, and matrix inversion. Appli-
cationsconfigurethememory controller so thatrequeststo
certain physical address regions trigger scatter/gather op-
erations (interfaceand programming detailsare presented
elsewhere [3]). When the processor issuesa load falling
into such a region, its remapping controller seesthe load
and broadcasts the appropriate scatter-gathervector com-
mand to all bank controller (BC) units via the bank con-
troller bus. In parallel, eachBC determineswhich parts of
thecommandit mustperform locally andthen “gathers” the
corresponding vectorelementsinto astaging unit. Whenall
BCshave fetchedtheir elements, they signal the remapping
controller, which constructs the completevector from the
datain the staging units. In this way, a single cache line fill
can load datafrom a setof sparse addresses,e.g., the row
elementsof a FORTRAN array.

We validatethePVA designvia gate-level synthesisand
simulation, and have evaluatedits performancevia func-
tional simulation andformal analysis. For the kernelswe
study, our PVA-basedmemory system fills normal (unit
stride) cache lines as fast as and up to 8% fasterthan a
conventional, cache-line interleaved memory systemopti-
mized for line fills. For larger strides,it loads elementsup

to 32.8 timesfasterthan theconventional memory system.
Our systemis up to 3.3 times faster thana pipelined,cen-
tralizedmemory access unit that gatherssparse vector data
by issuing (upto) oneSDRAM accesspercycle. Compared
to other parallel vectoraccessunits with similar goals[5],
gatheroperationsaretwo tofivetimesfaster. This improved
parallelaccessalgorithm only modestly increaseshardware
complexity. By localizing all architectural changeswithin
the memory controller, we require no modifications to the
processor, systembus,or on-chip memory hierarchy. This
scalable solution is applicableto arangeof computing plat-
forms, from vector computers with DRAM memories to
commodity personal computers.

2. Related Work

We limit our discussionto work that addressesloading
vectors from DRAM. Moyer definesaccessscheduling and
accessordering to be techniquesthat reduceload/store in-
terlock delaysby overlapping computationwith memory la-
tency, and thatchange theorderof memory requeststo in-
creaseperformance, respectively. [20]. Access scheduling
attempts to separate the execution of a load/store instruc-
tion from thatof the instruction that produces/consumesits
operand, thereby reducing the processor’s observed mem-
ory delays. Moyer applies both conceptsto compiler al-
gorithmsthatoptimize inner loops, unrolling and grouping
streamaccessesto amortize the costof eachDRAM page
missover several referencesto theopen page.

LeemimicsCray instructions on the Intel i860XR using
another softwareapproach, treating the cache asa pseudo
“vector register” by reading vectorelementsin blocks (us-
ing non-caching loads) and then writing them to a pre-
allocatedportion of cache [11]. Loading a single vectorvia
Moyer’sandLee’sschemeson aniPSC/860 nodeimproves
performance by 40-450%, depending on thestride [15].

Valeroet al. dynamicallyavoid bank conflicts in vector
processors by accessing vector elementsout of order. They
analyze this systemfirst for single vectors [24], and then
extend the design to multiple vectors [25]. del Corral and
Llaberia analyze a relatedhardware schemefor avoiding
bank conflicts among multiple vectors in complex memo-
ries [7]. Theseschemesfocus on vector computers with
(uniform accesstime) SRAM memory components.

ThePVA componentpresentedherein is similar to Cor-
bal et al.’sCommandVector Memory System[6] (CVMS),
which exploits parallelism and locality of reference to
improve effective bandwidth for out-of-order vector pro-
cessors with dual-banked SDRAM memories. Instead
of sending individual requeststo individual devices, the
CVMS broadcastscommands requestingmultiple indepen-
dentwords, a design ideawe adopt. Sectioncontrollersre-
ceivethebroadcasts,computesubcommandsfor theportion

of the data for which they areresponsible,and then issue
the addressesto SDRAMs under their control. The mem-
ory subsystemorders requests to eachdual-bankeddevice,
attempting to overlapprechargesto each internal bankwith
accesses to the other. Simulation results demonstrate per-
formanceimprovementsof 15-54%over a serialcontroller.
Our bankcontrollers behaviorally resemble CVMS section
controllers, but our hardware design and parallelaccessal-
gorithm (seeSection 4.3) differ substantially.

The Stream Memory Controller (SMC) of McKee
et al. [14] combines programmable stream buffers and
prefetching in a memory controller with intelligent DRAM
scheduling. Vector databypassthecache in this system,but
the underlying access-ordering concepts canbe adaptedto
systems thatcachevectors.TheSMC dynamicallyreorders
stream/vectoraccesses and issuesthem serially to exploit:
a) parallelismacrossdual banksof fast-page mode DRAM,
andb) locality of referencewithin DRAM pagebuffers. For
mostalignmentsandstrideson uniprocessorsystems,sim-
ple ordering schemes perform competitively with sophisti-
catedones [13].

Streamdetection is an important designissue for these
systems. At one end of the spectrum, the application pro-
grammermayberequired to identify vectors,as is currently
thecasein Impulse.Alternatively, thecompiler canidentify
vector accessesandspecify them to the memory controller,
an approachwe are pursuing. For instance, Benitezand
Davidsonpresent simple and efficient compiler algorithms
(whose complexity is similar to strength reduction) to de-
tect and optimize streams [2]. Vectorizing compilers can
alsoprovidetheneededvectorparameters, and can perform
extensive loop restructuring and optimization to maximize
vector performance [26]. At the other end of thespectrum
lie hardwarevector or streamdetectionschemes,asin refer-
enceprediction tables[4]. Any of thesesufficesto provide
the information Impulseneedsto generatevectoraccesses.

3. Mathematical Foundations

The Impulse remapping controller gathers strided data
structuresby broadcasting vectorcommandstoasetof bank
controllers (BCs),eachof which determinesindependently
and in tandemwith theotherswhichelements of thevector
residein theSDRAM it manages.This broadcastapproach
is potentially much moreefficient thanthe straightforward
alternative of having a centralized vector controller issue
the streamof element addresses,one per cycle. Realizing
this performancepotentialrequiresa methodwherebyeach
bank controller candeterminetheaddressesof theelements
that resideon its SDRAM without sequentially expanding
theentire vector. Theprimary advantage of our PVA mech-
anismoversimilar designs is theefficiency of our hardware
algorithms for computing eachbank’ssubvector.

We first introduce the terminology usedin describing
these algorithms. Base-stride vector operations are repre-
sented by a tuple, �������
	��
	���� , where ��� � is the
baseaddress, ��� � thesequencestride,and ��� � thesequence
length. We refer to � ’s ����� element as ��� ��� . For exam-
ple, ����	���	! "� designatesvector elements �#� $%� , �#� �&� ,
. . . �#�('*)+� . Thenumberof banks, , , is a power of two. The
PVA algorithm is basedon two functions:

1. FirstHit(� , -) takesavector � and abank - andreturns
either the index of thefirst element of � that hits in -
or avalue indicating thatnosuch elementexists.

2. NextHit(�) returns an increment . such that if a bank
holds �/� 01� , it alsoholds �
� 0�23.4� .

Spaceconsiderations only permit a simplified explana-
tion here. Our technical report containscompletemathe-
maticaldetails[12]. FirstHit() andfirst addresscalculation
together canbe evaluatedin two cycles for power of two
stridesand atmostfivecyclesfor otherstrides.Theirdesign
is scalableand can be implementedin a variety of ways.
This paper henceforth assumesthat they are implemented
asaprogrammable logic array (PLA). NextHit() is trivial to
implement, and takesonly a few gatedelays to evaluate.

Given inputs - , , , �5�6� mod , , and ��� ��798+:;, , each
bank controller usesthesefunctions to independently de-
terminethe sub-vectorelements for which it is responsible.
The BC for bank - performsthefollowing operations(con-
currently, wherepossible):

1. calculate i=FirstHit(� , -); if NoHit, continue.

2. while i � V.L do
accessmemory location V.B + i < V.S
i += NextHit(V.S)

4. Vector Access Unit

Thedesign spacefor aPVA mechanismis enormous: the
typeof DRAM, numberof banks, interleave factor, andim-
plementation strategy for FirstHit() can be varied to trade
hardwarecomplexity for performance.For instance,lower-
cost solutionsmight let asetof bankssharebankcontrollers
and BC buses,multiplexing theuse of theseresources. To
demonstratethe feasibility of our approach and to derive
timing and hardware complexity estimates,we developed
and synthesizeda Verilog model of one design point in this
large space. The implementation uses 16 banks of word-
interleaved SDRAM (32-bit wide). Each hasa dedicated
bank controller that drives 256 Mbit 16-bit wide Micron
SDRAM parts,eachof which contains four internal banks
[17]. Thecurrent PVA designassumesanL2 cache line of
128 bytes, andtherefore operateson vector commands of

32 single-word elements.Wefirst describetheimplementa-
tion of thebank-controller bus and theBCs, and then show
how thecontrollerswork in tandem.

4.1 Bank Controller Bus

As illustratedin Figure 1, the bank controllers commu-
nicatewith the restof the memory controller via a shared,
spli t-transaction bus(BC bus)thatmultiplexes requestsand
data. During a vector request cycle, each bus supports a
32-bit address, 32-bit stride, three-bit transaction ID, two-
bit command, and somecontrol information. During a data
cycle, each supports 64 data bits. Thecurrent PVA design
targetsa MIPSR10000processorwith a 64-bit systembus,
on which the PVA unit can sendor receive one dataword
percycle. No intermediateunit is neededto mergedatacol-
lected by multiple BCs: when readdatais returned to the
processor, the BCs take turnsdriving their partof thecache
line onto the system bus. Electrical limitations require a
turn-around cycle whenever bus ownershipchanges, but to
avoid thesedelaycycles,weusea128-bit BC busand drive
alternate64-bit halvesevery otherdatacycle. In addition to
the 128multiplexedlines,the BC busincludeseight shared
transaction-complete indication lines.

4.2 Bank Controllers

For a given vector reador write command, eachBank
Controller (BC) is responsiblefor identify ing and accessing
the(possiblynull) subvector that residesin its bank. Shown
in Figure2, the architectureof thiscomponentconsistsof:

1. a FirstHit Predictor to determines whether elements
of a givenvector request hit this bank. If there is a hit
and the stride is a power of two, this subcomponent
performstheFirstHit addresscalculation;

2. aRequestFIFO to queue vectorrequests for service;
3. a Register File to provide storage for the Request

FIFO;
4. a FirstHit Calculate module to determine the address

of the first element hitting this bank whenthe stride is
not apowerof two;

5. anAccessScheduler to drive theSDRAM, reordering
read,write, bank activateand precharge operations to
maximizeperformance;

6. a set of Vector Contexts within the AccessScheduler
to represent thecurrent vectorrequests;

7. a Scheduling Policy Module within each Vector Con-
text to dictate thescheduling policy; and

8. a Staging Unit that consistsof (i) a ReadStaging Unit
to store read-datawaiting to beassembled into acache
line, and(ii) a Write Staging Unit to store write-data
waiting to be sentto theSDRAMs.

We briefly describe eachof thesesubcomponents. Essen-
tial to efficient operation areseveral bypass paths that re-
ducecommunication latency within the BC. Our technical
report fleshesout detailsof thesemodulesand their interac-
tions [12]. Themain modules of theBC manage the com-
putations required for parallel vector access,the efficient
scheduling of SDRAM, and the datastaging.

4.2.1 Parallelizing Logic

The parallelizing logic consists of the FirstHit Predict
(FHP) module, the RequestFIFO (RQF), theRegisterFile
(RF), and theFirstHit Calculate (FHC) modules. The FHP
module watches vectorrequestson the BC bus and deter-
mineswhetheror not any elementof a requestwill hit the
bank. The FHP calculates the FirstHit index, the index
of the first vector element in the bank. For power-of-two
stridesthathit, theFHPalso calculatestheFirstHit address,
the bank addressof the first element.The FHPthensignals
theRQFto queue: therequest’s �=�#�>��	��?	@�A� tuple; the
FirstHit index; the calculatedbank address, if ready; and
anaddresscalculation complete (ACC) flag indicating the
statusof the bankaddressfield.

The RF subcomponent contains asmany entries as the
number of outstanding transactions permitted by the BC
bus, which is eight in this implementation. TheRQFmod-
ule implements the statemachine and tail pointer to main-
tain the RF as a queue, storing vector requests in the RF
entriesuntil thoserequestsare assigned to vectorcontexts.
Queuedrequestswith a cleared ACC flag require further
processing: the FHC module computes the FirstHit ad-
dressfor theserequests,whose stride is not a power of
two. The FHC scans the requestsbetween the queue head
pointer, which it maintains,andthe tail pointer, multiply-
ing thestride � by theFirstHit index calculatedby theFHP,
and then adding that to thebaseaddress � to generatethe
FirstHit address.The FHC thenwritesthis addressinto the
registerfile and setsthe entry’s ACC flag. Since this cal-
culation requires a multiply and add, it incurs a two-cycle
delay, but theFHCworksin parallelwith theAccessSched-
uler (SCHED), so when thelattermodule is busy, this delay
is completely hidden. Whenthe SCHED seesthe ACC bit
setfor theentry at the headof the RQFit knows that there
is a vector requestready for issue.

4.2.2 Access Scheduler

The SCHED and its subcomponents, the Vector Contexts
(VCs) andScheduling Policy Unit (SPU)modules, are re-
sponsiblefor: (i) expandingtheseriesof addressesin avec-
tor request,(ii) ordering the streamof reads, writes, bank
activates,and precharges so that multiple vector requests
canbeissuedoptimally, (iii) making row activate/precharge

BDC E FHGJI IHK C L L
. . .

M�N K C IPO QHRHN SUTHK C I6N S FDO N V C L

B6C W�X6C S F QHK

Y G(I IHK C L L Z [HF K N I C Z \^] C K _ F N QHV `
Context_nContext_1Context_0

a bcd begf
h feij

a bcd begf
h fikl
dj i m k

bbegfh
fikl
dj i

[(n(oDGgp!qJr L

n6_ F _ sHT _ F t sHO Q S u

FirstHit Calculate

v V wHr L s xv V wHr L s x s L C yv V wHr L s x s C V _ wHy C
v V wHr L s z

m k
d begfh

m k
d begfh f
eij

a bcd begf
{ feij a bcd begf

{

a bcd begf
{ fikl
dj i

v V wHr L s z s C V _ wHy C

a bcd begf
h

Y O C V R F t�Z |6v nDZ }(~�IHZ n6_ F _ `

}DQHV F K Q6y[HF _ R C

SDRAM Interface

|6K _ V L _ S F N QHV s }DQH~�]Hy C F Cn6_ F _

Register File

Scheduler

Request
FIFO

�JN F � BDQ �gN F
FirstHit
Predict

B
an

k
C

o
n

tr
o

lle
r

B
u

s

v V wHr L s z s L C y
pgQ I6N � N C IUX6C S F QHKo6C �6r C L F

� ��le
e

� ��le
e

o6C �6r C L F
Staging Unit

VectorAccess VectorVector

Figure 2. Bank controller internal organization

decisions, and (iv) driving the SDRAM. TheSCHEDmod-
ule decides when to keep an SDRAM row open, and the
SPUswithin the SCHED’sVCsreordertheaccesses.

Thecurrentdesign containsfour VCs,eachof which can
hold a vector request whoseaccesses are readyto be issued
to theSDRAM. TheVC performsaseriesof shiftsandadds
to generate the sequenceof addressesrequired to fetch a
particular vector. Theseefficient calculationsconstitutethe
crux of our PVA approach,and our technicalreport explains
their details.TheVCssharetheSCHEDdatapath,andthey
cooperate to issuethehighestpriority pending SDRAM op-
erationrequired by any VC. The VCs arbitratefor this dat-
apathsuch thatat mostone can access it in any cycle, and
the oldest pending operation has highest priority. Vector
operations areinjectedinto VC 0, and whenever onecom-
pletes(at most onefinishesper cycle), otherpending oper-
ations“shift right” into the next freeVC. To give the oldest
pending operation priority, we daisy-chain theSCHEDre-
quests fromVC N to VC 0 such thata lowernumberedVC
canplace a requeston theshareddatapath if andonly if no
highernumberedVC wishesto doso.

The VCs attempt to minimize precharge overhead
by giving accesses that hit in an open internal bank
priority over requests to a different internal bank on
the same SDRAM module. Three lines per inter-
nal bank — bank hit predict, bank more hit predict, and
bank close predict — coordinate this operation. The
SCHEDbroadcaststo theVCsthethecurrent row addresses

of the openinternal banks. Whena VC determinesthat it
hasa pending requestthat would hit anopen row, it drives
the internal bank’s shared line to tell the SCHED not to
close the row – in other words,we implement a wiredOR
operation. Likewise,VCs thathave a pending request that
missesin the internal bank use thebank closepredict line
to tell theSCHED to closethe row. TheSPUswithin each
of the VCs decide together which VC can issuean oper-
ation during the current cycle. This decision is basedon
their collective stateas observed on the bank hit predict,
bank more hit predict, andbank closepredict lines. Sep-
arate SPUsare used to isolate the scheduling heuristics
within thesubcomponents,permitting experimentation with
the scheduling policy without changing therestof theBC.

The scheduling algorithm strives to improve perfor-
manceby maximizing row hits and hiding latencies; it does
thisby operating otherinternalbankswhile agiveninternal
bank is being openedor precharged. We implement a pol-
icy thatpromotesrow opensand prechargesaboveread and
write operations, aslong asthe former do not conflict with
the openrows in useby another VC. This heuristic opens
rowsasearly aspossible.Whenconflicts or open/precharge
latenciesprevent highernumberedVCs from issuing a read
or write, a lower priority VC mayissue its readsor writes.
The policy ensuresthat whenanolder requestcompletes,a
new requestwill be ready, even if thenew oneusesadiffer-
ent internal bank. Details of the scheduling algorithm are
given in our technical report [12].

4.2.3 Staging Units

The Staging Units (SUs) store data returned by the
SDRAMsfor aVC-generatedreadoperation or provided by
the memory controller for a write. In thecase of a gathered
vector readoperation, theSUson theparticipating BCsco-
operateto mergevectorelementsinto acachelineto besent
to thememory controller front end, asdescribedin Section
4.1. In the case of a scattered vector write operation, the
SUsat eachparticipatingBC buffer the write datasent by
the front end.

TheSUsdrivea transaction completeline on theBC bus
to signal thecompletion of apending vectoroperation. This
line acts as a wired OR that deassertswhenever all BCs
have finisheda particular gathered vector reador scattered
vector write operation. When the line goeslow during a
read, the memory controller issuesa STAGE READ com-
mand on the vector bus, indicating which pending vector
readoperation’s datais to be read. Whenthe line goeslow
during awrite, thememory controller knowsthatthecorre-
spondingdatahasbeencommitted to SDRAM.

4.2.4 Data Hazards

Reordering reads and writes may violate consistency se-
mantics.To maintainacceptableconsistency semanticsand
to avoid turnaround cycles, the following restriction is re-
quired: a VC mayissuea read/write only if thebus hasthe
samepolarity and no polarity reversalshaveoccurredin any
preceding (older) VC. The gist of this rule is that elements
of different vectors may be issued out-of-order as long as
they arenot separatedby a requestof the opposite polarity.
This policy givesriseto two important consistency seman-
tics. First, RAW hazards cannot happen. Second, WAW
hazards may happen if two vector write requests not sep-
aratedby a readhappen to write different datato the same
location. Weassumethatthelatterevent is unlikely to occur
in auniprocessormachine. If theL2 cachehasawrite-back
andwrite-allocatepolicy, thenany consecutivewritesto the
same locationwill be separatedby a read. If strictercon-
sistency semantics are required a compiler can bemadeto
issuea dummy readto separate thetwo writes.

4.3 Timing Considerations

SDRAMs definetiming restrictions on the sequence of
operations thatcanlegally beperformed.To maintain these
restrictions, weusea set of small counterscalledrestimers,
eachof which enforcesonetiming parameterby asserting a
“resourceavailable” line whenthecorresponding operation
is permitted. The control logic of the VC window works
likeascoreboardandensuresthatall timing restrictionsare
met by letting a VC issue an operation only when all the

Kernel Access Pattern

copy for (i=0; i � L � S; i+=S)
y[i]=x[i];

saxpy for (i=0; i � L � S; i+=S)
y[i] += a � x[i];

scale for (i=0; i � L � S; i+=S)
x[i]=a � x[i];

swap for (i=0; i � L � S; i+=S)�
reg=x[i]; x[i]=y[i]; y[i]=reg; �

tridiag for (i=0; i � L � S; i+=S)
x[i]=z[i] � (y[i]-x[i-1]);

vaxpy for (i=0; i � L � S; i+=S)
y[i]+=a[i] � x[i];

Table 1. Inner loopsusedto evaluateourPVA unit design.

resourcesit needs— including therestimersand the datap-
ath— canbe acquired. Electricalconsiderations require a
one-cycle bus turnaround delaywhenever the bus polarity
is reversed,i.e., whena readis immediately followedby a
writeor vice-versa. The SCHEDunitsattempt to minimize
turnaroundcyclesby reordering accesses.

5. Experimental Methodology

This sectiondescribes the details and rationale of how
we evaluate the PVA design. The initial prototype uses
a word-interleaved organization, since block-interleaving
complicatesaddress arithmetic and increasesthe hardware
complexity of the memory controller. Our design can be
extendedfor block-interleaved memories, but we have yet
to perform price/performanceanalysesof thisdesignspace.
Note that Hsu and Smith study interleaving schemesfor
fast-page mode DRAM memories in vector machines [9],
finding cache-line interleaving andblock interleaving supe-
rior to low-order interleaving for many vectorapplications.
The systems they examine perform no dynamic access or-
dering to increaselocality, though, and their resultsthus
favor organizations that increasespatial locality within the
DRAM page buffers. It remains to be seen whether low-
order interleaving becomesmore attractive in conjunction
with accessorderingand scheduling techniques,but our ini-
tial results areencouraging.

Table 1 lists the kernelsusedto generate the results pre-
sented here.copy, saxpy andscale arefrom theBLAS
(BasicLinear Algebra Subprograms) benchmark suite[8],
and tridiag is a tridiagonal gaussian elimination frag-
ment, the fifth Livermore Loop [16]. vaxpy denotes a
“vector axpy” operationthat occursin matrix-vectormulti-
pli cationby diagonals. Wechooseloopkernelsoverwhole-
programbenchmarks for this initial study because: (i) our
PVA scheduler only speeds up vector accesses,(ii) kernels
allow us to examine the performanceof our PVA mecha-
nism over a larger experimentaldesignspace,and (iii) ker-
nelsaresmallenoughto permit thedetailed, gate-level sim-
ulations required to validatethedesignand to derive timing

Type Count

AND2 1193
D FLIP-FLOP 1039
D Latch 32
INV 1627
MUX2 183
NAND2 5488
NOR2 843
OR2 194
XOR2 500
PULLDOWN 13
TRISTATE BUFFER 1849
On-chip RAM 2K bytes

Table 2. Complexity of thesynthesized bank controller.

estimates. Performance on larger, real-world benchmarks
— via functional simulation of the whole Impulse system
or performanceanalysis of the hardwareprototype we are
building — will benecessaryto demonstratethefinal proof
of concept for the design presented here, but theseresults
are not yetavailable.

Recall thatthebusmodelwetargetallowsonly eight out-
standing transactions.This limit preventsus fromunrolling
most of our loops to group multiple commands to a given
vector, but we examine performance for this optimization
on thetwo kernelsthat accessonly two vectors,copy and
scale. In our experiments,we vary both thevectorstride
and the relative vector alignments (placement of the base
addresses within memory banks, within internal banks for
a given SDRAM, andwithin rows or pagesfor a given in-
ternalbank). All vectorsare1024elements (32 cachelines)
long, and thestridesare equal throughout a given loop. In
all, wehaveevaluatedPVA performancefor 240 datapoints
(eight access patterns < six strides < five relative vector
alignments)for eachof four different memory systemmod-
els. We present highlights of theseresultsin the following
section; detailsmaybe found in our technical report [12].

6. Results

Thissectionpresentstiming andcomplexity resultsfrom
synthesizing thePVA and comparative performance results
for our suiteof benchmark kernels.

6.1 Synthesis Results

Our end goal is to fabricatea CMOS ASIC of the Im-
pulsememory controller, but we arefirst validatingpieces
of the largerdesignusing FPGA(field programmablegate
array) technology. We producean FPGA implementation
on an IKOSHermesemulator with 64Xi-4000FPGAs,and
then use this implementation to derive timing estimates.
The PVA’s Verilog description consistsof 3600 lines of
code. The typesand numbers of componentsin the syn-
thesizedbank controller are given in Table 2. We expect

that the custom CMOS implementation to be much more
efficient thantheFPGAimplementation.

We used the synthesized design to measure delay
through thecritical path— the multiply-and-add circuit re-
quired to calculate FirstHit() for non-power-of-two strides.
Our multiply-and-addunit hasadelay of 29.5ns.Weexpect
that an optimizedCMOS implementationwill have a delay
lessthan 20ns, making it possible to complete this opera-
tion in two cycles at 100MHz. Otherpaths are fastenough
to operateat 100MHz even in the FPGA implementation.
The FHPunit hasa delayof 8.3nsand SCHEDhas a delay
of 9.3ns. CMOS timing considerations arevery different
from thosefor FPGAs, and thus the optimizationstrategies
differ significantly. TheseFPGA delays represent anupper
bound— thecustom CMOSversion will be muchfaster.

6.2 Performance Results

We compare the performance of the PVA functional
model to threeothermemory systems.Figure3(a)-(c) show
the comparative performance for our four memory models
on strides1, 2, 4, 8, 16, and19 for the copy, swap, and
vaxpy kernels,andFigure 3(d)-(f) show comparative per-
formanceacrossall benchmarksfor strides1,4, and16. The
annotationsaboveeachbar indicateexecution timenormal-
izedto the minimum PVA SDRAM cycle time for eachac-
cesspattern. Barsthat would be off the y scalearedrawn
at themaximumy valueand annotatedwith theactual num-
ber of cyclesspent. The setsof bars labeled“copy2” and
“scale2” represent unrolled kernelsin which readandwrite
vector commandsaregrouped(so thePVA seestwo consec-
utive vectorcommandsfor the first vector, thentwo for the
second, and so on). Thisoptimization only improvesperfor-
mancefor thePVA SDRAM systems, yielding a slight ad-
vantage over the unoptimized versions of the samebench-
mark. If more outstanding transactions were allowed on
theprocessor bus, greaterunrolling would deliver larger im-
provements.

Thebarslabeled“cacheline interleavedserial SDRAM”
model the back end of an idealized, 16-module SDRAM
systemoptimized for cacheline fills. The memory bus is
64 bits, and L2 cache linesare128 bytes. The SDRAMs
modeledrequire two cycles for each of RAS andCAS,and
are capableof 16-cycle bursts. We optimistically assume
that precharge latenciescanbeoverlappedwith activity on
other SDRAMs (andwe ignore the fact that writing lines
takesslightly less time thanreading), thus eachcache line
fill takes 20 cycles(two for RAS, two for CAS,and16 for
thedataburst).Thenumberof cachelinesaccesseddepends
on thelengthand strideof thevectors; this system makesno
attempt to gather sparsedatawithin thememory controller.

The bars labeled “gathering pipelined serial SDRAM”
model the back end of a 16-module, word-interleaved

str
ide

 1

str
ide

 2

str
ide

 4

str
ide

 8

str
ide

 1
6

str
ide

 1
9

0

2000

4000

6000

cy
cl

es�

min parallel vector SDRAM
max parallel vector SDRAM
min parallel vector SRAM
max parallel vector SRAM
gathering pipelined serial SDRAM
cache line interleaved serial SDRAM

 1
.1

4
 0

.9
5

 0
.9

5
 3

.1
9

 1
.0

0

 1
.1

9
 0

.9
7

 1
.0

4
 3

.1
8

 1
.9

9

 1
.2

6
 0

.9
7

 1
.1

3
 2

.8
9 3

.6
1

 1
.3

7
 0

.9
8

 1
.2

5
 2

.4
3

 6
.0

8

10
24

0�

 1
.5

0
 0

.9
8 1

.4
1

 1
.9

1
 9

.2
3

20
48

0�

 1
.1

3
 0

.8
8

 0
.8

9
 2

.9
1

 2
9.

03

40
96

0

(a) copy

str
ide

 1

str
ide

 2

str
ide

 4

str
ide

 8

str
ide

 1
6

str
ide

 1
9

0

2000

4000

6000

cy
cl

es�

 1
.1

1
 0

.9
9

 0
.9

9
 3

.4
6

81
96

 1
.0

8

 1
.0

8
 0

.9
9

 1
.0

0
 3

.2
8

81
96 2

.0
5

 1
.0

7
 0

.9
9

 1
.0

0
 2

.9
8

81
96

 3
.7

2

10
24

0�
 1

.0
9

 0
.9

9
 1

.0
0

 2
.5

1

81
96

 6
.2

7

20
48

0� 1
.3

0
 1

.0
0 1

.2
1 1

.9
7

84
54

 9
.5

3

40
96

0

 1
.1

0
 0

.9
5

 0
.9

5
 3

.2
8

81
96

 3
2.

78

81
92

0

(b) swap

str
ide

 1

str
ide

 2

str
ide

 4

str
ide

 8

str
ide

 1
6

str
ide

 1
9

0

2000

4000

6000

cy
cl

es�

 1
.0

8
 0

.9
7

 0
.9

7
 3

.4
6

81
96

 1
.0

8

 1
.1

1
 1

.0
0

 1
.0

2
 3

.4
5

81
96 2

.1
6

 1
.1

5
 1

.0
1

 1
.0

7
 3

.2
7

81
96

 4
.0

8

10
24

0�

 1
.2

7
 1

.0
1

 1
.1

5
 2

.9
6

81
96

 7
.3

9

20
48

0� 1
.4

8
 1

.0
0

 1
.3

7 2
.2

4

84
54

 1
0.

86

40
96

0

 1
.0

7
 0

.9
3

 0
.9

3
 3

.2
7

81
96

 3
2.

69

81
92

0

(c) vaxpy

co
py

co
py

2

sa
xp

y
sc

ale

sc
ale

2
sw

ap

tri
dia

g� va
xp

y

0

2000

4000

6000

cy
cl

es�

 1
.1

4
 0

.9
5

 0
.9

5
 3

.1
9

 1
.0

0

 1
.0

8
 0

.9
8

 0
.9

8
 3

.4
6

 1
.0

8 1
.1

1
 0

.9
6

 0
.9

6
 3

.3
7

61
48

 1
.0

5

 1
.0

0
 0

.9
5

 0
.9

5
 3

.1
9

 1
.0

0

 1
.0

0
 0

.9
8

 0
.9

8
 3

.4
6

 1
.0

8

 1
.1

1
 0

.9
9

 0
.9

9
 3

.4
6

81
96

 1
.0

8

 1
.1

0
 0

.9
6

 0
.9

6
 3

.3
7

61
48

 1
.0

5 1
.0

8
 0

.9
7

 0
.9

7
 3

.4
6

81
96

 1
.0

8

(d) stride 1

co
py

co
py

2

sa
xp

y
sc

ale

sc
ale

2
sw

ap

tri
dia

g� va
xp

y

0

2000

4000

6000

cy
cl

es�

 1
.2

6
 0

.9
7

 1
.1

3
 2

.8
9 3

.6
1

 1
.1

7
 1

.0
0

 1
.0

8
 3

.2
6 4

.0
7

 1
.2

6
 1

.0
0

 1
.0

9
 3

.1
3

61
48

 3
.9

1

76
80

 1
.0

0
 0

.9
6

 0
.9

6
 2

.4
6 3

.0
7

 1
.0

0
 0

.9
9

 0
.9

9
 2

.9
8 3

.7
2

 1
.0

7
 0

.9
9

 1
.0

0
 2

.9
8

81
96

 3
.7

2

10
24

0�

 1
.1

9
 1

.0
0

 1
.0

9
 3

.1
3

61
48

 3
.9

1

76
80

 1
.1

5
 1

.0
1

 1
.0

7
 3

.2
7

81
96

 4
.0

8

10
24

0�

(e) stride 4

co
py

co
py

2

sa
xp

y
sc

ale

sc
ale

2
sw

ap

tri
dia

g� va
xp

y

0

2000

4000

6000

cy
cl

es� 1
.5

0
 0

.9
8 1

.4
1

 1
.9

1
 9

.2
3

20
48

0�

 1
.4

2
 1

.0
0 1

.3
5

 2
.2

0
 1

0.
64

20
48

0� 1
.4

5
 0

.9
9 1

.2
9

 1
.9

7

63
42

 9
.5

2

30
72

0

 1
.0

0
 0

.9
8

 0
.9

8
 1

.3
2

 6
.3

8

20
48

0�

 1
.0

0
 0

.9
9

 0
.9

9
 1

.6
2

 7
.8

3

20
48

0� 1
.3

0
 1

.0
0 1

.2
1 1

.9
7

84
54

 9
.5

3

40
96

0

 1
.6

1
 1

.0
0

 1
.5

1
 2

.3
0

63
42

 1
1.

12

30
72

0 1
.4

8
 1

.0
0

 1
.3

7 2
.2

4

84
54

 1
0.

86

40
96

0

(f) stride 16

Figure 3. Comparative performance for four memory back

ends.

co
py

co
py

2

sa
xp

y
sc

ale

sc
ale

2
sw

ap

tri
dia

g

va
xp

y

0

2000

4000

6000

cy
cl

es�

 1
.1

3
 0

.8
8

 0
.8

9
 2

.9
1

 2
9.

03

40
96

0

 1
.0

7
 0

.9
4

 0
.9

5
 3

.2
7

 3
2.

69

40
96

0

 1
.1

0
 0

.9
1

 0
.9

1
 3

.1
3

61
48

 3
1.

31

61
44

0�

 1
.0

0
 0

.8
8

 0
.8

8
 2

.8
8

 2
8.

78

40
96

0

 1
.0

0
 0

.9
4

 0
.9

4
 3

.2
7

 3
2.

64

40
96

0

 1
.1

0
 0

.9
5

 0
.9

5
 3

.2
8

81
96

 3
2.

78

81
92

0

 1
.0

9
 0

.9
2

 0
.9

2
 3

.1
4

61
48

 3
1.

39

61
44

0�

 1
.0

7
 0

.9
3

 0
.9

3
 3

.2
7

81
96

 3
2.

69

81
92

0

Figure 4. Comparativeperformance for aprime stride (19).

SDRAM system with a closed-page policy and pipelined
precharge.As before, thememory busis 64bits, and vector
commandsaccess32elements(128bytes,sincethepresent
systemuses4-byte elements).Insteadof performing cache
line fills, this systemaccesseseachvector element individ-
ually. Althoughaccessesareissued serially, weassumethat
the memory controller can overlapRAS latencieswith ac-
tivity on other banks for all but the first element accessed
by eachcommand. We optimistically assume that vec-
tor commands never crossDRAM pages,and thusDRAM
pagesareleft openduring theprocessing of eachcommand.
Precharge costs areincurred at the beginning of eachvec-
tor command. This systemrequiresmore cyclesto access
unit-stridevectorsthanthecacheline interleavedsystemwe
model, but because it only accessesthe desired vector el-
ements,its relative performance increasesdramatically as
vector stride goesup.

Thebarslabeled“min parallel vectoraccessSRAM” and
“maxparallelvectoraccessSRAM” model theperformance
of anidealizedSRAM vectormemory systemwith thesame
parallel access scheme but with no precharge or RAS la-
tencies.Comparing PVA SDRAM and PVA SRAM system
performancesgivesameasureof how well our systemhides
the extra latenciesassociated with dynamic RAM.

For unit-stride accesspatterns (dense vectors or cache-
line fills), the PVA performsabout the same asa cache-line
interleaved systemthat performs only line fills. As shown
in Figure3, normalizedexecution time for thelattersystem
is between100% (for copy andscale) and 108% (for
copy2, andscale2, vaxpy, swap) of the PVA’s min-
imum execution time for our kernels. As stride increases,
the relative performance of the cache-line interleaved sys-
tem falls off rapidly: at stride four, normalizedexecution
time risesto between307% (for scale) and 408% (for
vaxpy) of the PVA system’s, and at stride 16, normal-
ized execution time reaches1112% (for tridiag). Fig-
ure 3(a), (b), and (c) demonstratethat performanceshows
similar trends for eachbenchmark kernel. Figure3(d), (e),
and (f) show performancetrends for a given vectorstride.
Figure 4 shows performance results for vectors with large
stridesthatstill hit all thememory banks. Performances for
both our SDRAM PVA system and the SRAM PVA sys-

str
ide

 1

str
ide

 2

str
ide

 4

str
ide

 8

str
ide

 1
6

str
ide

 1
9

0

2000

4000

6000

cy
cl

es�

diff mod #, same bank #, diff page #
same mod #, diff bank #, same page #
same mod #, same bank #, diff page #
same mod #, same bank #, same page #

 1
.0

0

 1
.0

0

 1
.0

0

 1
.0

3

 1
.0

3

 1
.0

3

 1
.0

6

 1
.0

6

 1
.0

6 1
.1

4

 1
.1

4

 1
.1

4

 1
.3

8

 1
.3

8

 1
.3

8

 1
.0

0

 1
.0

0

 1
.0

0

(a) SRAM PVA

str
ide

 1

str
ide

 2

str
ide

 4

str
ide

 8

str
ide

 1
6

str
ide

 1
9

0

2000

4000

6000

cy
cl

es�

 1
.1

1

 1
.0

3

 1
.1

1

 1
.0

3

 1
.0

3

 1
.0

3

 1
.0

8

 1
.0

3

 0
.9

9

 1
.0

3

 1
.0

7

 1
.0

2

 0
.9

9

 1
.0

2

 1
.1

0

 1
.0

8

 1
.0

0

 1
.0

2

 1
.0

7

 1
.0

6

 1
.1

5

 1
.0

7

 1
.1

5

 1
.1

0

(b) SDRAM PVA

Figure 5. Details of the vaxpy kernel performanceon thePVA

and a similar PVA SRAM system. Barsof graph(a) are annotated

with normalized execution time with respect to the leftmostbar,

and those of (b) with respect to thecorrespondingbarfrom (a).

temfor stride19aresimilar to thecorrespondingresultsfor
unit-stride accesspatterns. In contrast, theserialgathering
SDRAM and the cache-line interleaved systems yield per-
formancesmuchmore like those for stride 16.

Some relative vector alignments aremore advantageous
thanothers, as evidencedby the variations in the SDRAM
PVA performancein Figure5(b). TheSRAM versionof the
PVA systemin Figure5(a)showssimilar trendsfor thevar-
iouscombinationsof vector stride andrelative alignments,
although its performance is slightly more robust. For small
stridesthat hit morethantwo SDRAM banks,theminimum
and maximum execution times for the PVA system differ
only by a few percent. For strides that hit one or two of
the SDRAM components, though, relative alignmenthasa
larger impact onoverall execution time.

The results highlighted here arerepresentative of those
for all our experiments [12]. On densedata,the SDRAM
PVA performslikean SDRAMsystem optimizedfor cache-
linefills. In general,it performsmuchlikeanSRAM vector
memory systemata fraction of the cost.

7. Discussion

In this paper, we have described the designof a Paral-
lel Vector Accessunit (PVA) for theImpulsesmartmemory
controller. ThePVA employs a novel parallel accessalgo-
rithm that allows a collection of bank controllers to deter-

mine in tandemwhich parts of a vector command are lo-
catedon their SDRAMs. The BCs optimize low-level ac-
cessto their SDRAMsto maximize thefrequency of open-
row hitsandoverlapaccessesto independent banksasmuch
as possible. As a result, the Impulse memory controller
always performs no worsethan1% slower (andup to 8%
faster) thana memory systemoptimized for normal cache
line fills on unit-stride accesses.For vector-styleaccesses,
thePVA deliversdataup to 32.8 timesfaster thanaconven-
tional memory controller and up to 3.3 timesfaster thanal-
ternative vector accessunits, for a modest increase in hard-
ware complexity. We areintegrating the PVA into the full
Impulse simulation environment, so that we can evaluate
the performanceimprovementsacrosswhole applications.

Space limitations prevent us from fully addressing a
numberof important featuresof the PVA, including scala-
bil ity, interoperabil ity with virtual memory, andtechniques
for optimizing other kinds of scatter-gather operations. Ul-
timately, the scalability of our memory systemdependson
the implementation choice of FirstHit(). For systems that
use a PLA to compute the firsthit index, thecomplexity of
the PLA grows with the square of the number of banks,
which limits the effective sizeof such a designto around
16 banks. For systemswith a small number of banks in-
terleaved at block-size � , replicating the FirstHit() logic
� times in each BC is optimal. For very large memory
systems, regardlessof their interleave factor, it is best to
implement a PLA to calculatethe successive vector indices
within a bank. The complexity of this PLA increasesap-
proximately linearly with the numberof banks, the restof
the hardware remains unchanged, and the performance is
constant, irrespective of the numberof banks.

Anotherdesign issue is how to handle “contiguous” data
spreadacrossdisjoint physicalpages.If stridedvectorsspan
multiple pages,additional address translation logic is re-
quired in the BCs. In the current evaluation, weassume the
databeinggathered into eachdensecacheline falls within
a single page or superpage of physical memory. Working
aroundthe limitationsof pagedvirtual memory is discussed
in our technical report [12].

Finally, thePVA describedhere canbeextendedto han-
dle vector-indirect scatter-gather operations by performing
the gather in two phases:(i) loading the indirection vec-
tor into the BCs and then (ii) loading the vector elements.
Thefirst phaseis simply aunit-stridevector loadoperation.
After the indirection vector is loaded, its contents can be
broadcastacrosstheBC bus. Each BC determineswhich el-
ementsresidein itsSDRAMby snoopingthisbroadcast and
performing a simple bit-mask operationon eachaddress.
Then eachBC performs its part of the gather in parallel,
and theresultarecoalesced from the staging units in much
the sameway asfor stridedaccesses,

In summary, we have presented the designof a Paral-
lel Vector Accessunit thatshows greatpromise for provid-
ing applicationswith poor localitywith vector-machine-like
memory performance. Although much work remains to be
done,ourexperiencetodateindicatesthatsuch asystemcan
significantly reducethe memory bottleneckfor the kindsof
applications that suffer on conventional memory systems.
Thenext stepsareto evaluatethePVA design on a suite of
whole-programbenchmarksand to addresstheissuesraised
above, particularly the interaction with virtual memory and
supporting other scatter-gatheroperations.

8. Acknowledgments

Discussions with Mike Parker and Lambert Schaelicke
on aspects of the PVA designand its evaluation proved
invaluable. Ganesh Gopalakrishnan helped with the
IKOS equipment and the Verilog model. Wilson Hsieh,
Lixin Zhang, and the other members of the Impulse and
Avalanche projects helped shape this work, and Gordon
Kindlmannhelpeduswith thefigures.

References

[1] AdvancedMicro Devices. Inside 3DNow!(tm) technology.
http://www.amd.com/products/cpg/k623d/inside3d.html.

[2] M. BenitezandJ.Davidson. Codegeneration for streaming:
An access/execute mechanism. In Proceedings of the 4th
Symposiumon Architectural Support for Programming Lan-
guagesandOperatingSystems, pages132–141, Apr. 1991.

[3] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang,
E. Brunvand,A. Davis,C.-C.Kuo,R.Kuramkote,M. Parker,
L. Schaelicke, , and T. Tateyama. Impulse: Building a
smartermemory controller. In Proceedingsof theFifth An-
nual Symposium on High Performance ComputerArchitec-
ture, pages70–79, Jan.1999.

[4] T.-F. Chen. Data Prefetching for High PerformanceProces-
sors. PhDthesis,Univ. of Washington, July1993.

[5] J.Corbal, R.Espasa,andM. Valero.Commandvectormem-
ory systems:High performanceat low cost. In Proceedings
of the 1998 International Conference on Parallel Architec-
turesand CompilationTechniques, pages68–77,Oct.1998.

[6] J. Corbal, R. Espasa, and M. Valero. Command vector
memory systems: High performance at low cost. Tech-
nical Report UPC-DAC-1999-5, UniversitatPolitecnica de
Catalunya,Jan.1999.

[7] A. del Corral andJ. Llaberia. Access order to avoid inter-
vectorconflictsin complex memorysystems.In Proceedings
of the Ninth International Parallel ProcessingSymposium,
1995.

[8] J.Dongarra,J.DuCroz, I. Duff, andS. Hammerling. A setof
level 3 basiclinearalgebrasubprograms.ACM Transactions
onMathematicalSoftware, 16(1):1–17, Mar. 1990.

[9] W. HsuandJ.Smith. Performanceof cachedDRAM organi-
zationsin vector supercomputers.In Proceedingsof the20th

Annual International Symposiumon ComputerArchitecture,
pages327–336, May 1993.

[10] Intel. MMX programmer’s reference manual.
http://developer.intel.com/drg/mmx/Manuals/prm/prm.htm.

[11] K. Lee. TheNAS860 Library User’s Manual. NASA Ames
ResearchCenter,Mar. 1993.

[12] B. Mathew, S. McKee, J. Carter, and A. Davis. Parallel
access ordering for SDRAM memories. Technical Report
UUCS-99-006, Universityof UtahDepartment of Computer
Science,June1999.

[13] S. McKee. Maximizing Memory Bandwidth for Streamed
Computations. PhD thesis, School of Engineeringand Ap-
pliedScience,Universityof Virginia,May1995.

[14] S. McKeeet al. Designand evaluationof dynamic access
ordering hardware. In Proceedings of the 10th ACM Inter-
national Conferenceon Supercomputing, Philadelphia,PA,
May 1996.

[15] S. McKee and W. Wulf. Accessordering and memory-
consciouscache utilization. In Proceedingsof the First An-
nual Symposium on High Performance Computer Architec-
ture, pages253–262, Jan.1995.

[16] F. McMahon. The livermore fortran kernels: A computer
test of the numerical performance range. Technical Re-
port UCRL-53745, Lawrence Livermore National Labora-
tory, December1986.

[17] Micron Technology, Inc. 256mb: Sdram.
http://www.micron.com/mti/msp/pdf/datasheets/256MSDRAM.pdf.

[18] MIPS Technologies,Inc. MIPS extensionfor digital media
with 3D. http://www.mips.com/Documentation/isa5 tech brf.pdf.

[19] Motorola. Alti vec(tm) technology pro-
gramming interface manual, rev. 0.9.
http://www.mot.com/SPS/PowerPC/teksupport/teklibrary/manuals/altivecpim.pdf,
Apr. 1999.

[20] S. Moyer. AccessOrderingAlgorithmsandEffectiveMem-
ory Bandwidth. PhDthesis,School of Engineering andAp-
pliedScience,Universityof Virginia,May1993.

[21] SUN. TheVISadvantage:Benchmarkresultschart VIS per-
formance. WhitepaperWPR-0012.

[22] Sun. VIS instruction set user’s manual.
http://www.sun.com/microelectronics/manuals/805-1394.pdf.

[23] J.Tyler, J.Lent, A. Mather, andH. Nguyen. Alti vec: Bring-
ing vector technology to the powerpc processor family. In
Proceedings of the 1999 IEEE International Performance,
Computing, andCommunicationsConference, Feb. 1999.

[24] M. Valero,T. Lang,J.Llaberia, M. Peiron,E. Ayguade,and
J. Navarro. Increasing the number of strides for conflict-
freevector access. In Proceedingsof the 19th Annual Inter-
national Symposium on Computer Architecture, pages372–
381, May1992.

[25] M. Valero, T. Lang,M. Peiron,andE.Ayguade.Conflict-free
accessfor streamsin multi-modulememories.TechnicalRe-
port UPC-DAC-93-11,Universitat PolitecnicadeCatalunya,
Barcelona,Spain,1993.

[26] M. Wolfe. Optimizing Supercompilers for Supercomputers.
MIT Press,Cambridge, Massachusetts,1989.

