A Loop Accelerator for Low Power Embedded VLIW
Processors

Binu Mathew, Al Davis
School of Computing, University of Utah
Salt Late City, UT 84112
{mbinu | aldy@cs.utah.edu

ABSTRACT

The high transistor density afforded by modern VLSI processes
have enabled the design of embedded processors that use clustered
execution units to deliver high levels of performance. However,
delivering data to the execution resources in a timely manner re-
mains a major problem that limits ILP. It is particularly significant
for embedded systems where memory and power budgets are lim-
ited. A distributed address generation and loop acceleration archi-
tecture for VLIW processors is presented. This decentralized on-
chip memory architecture uses multiple SRAMs to provide high
intra-processor bandwidth. Each SRAM has an associated stream
address generator capable of implementing a variety of addressing
modes in conjunction with a shared loop accelerator.

The architecture is extremely useful for generating application
specific embedded processors, particularly for processing input data
which is organized as a stream. The idea is evaluated in the context
of a fine grain VLIW architecture executing complex perception al-
gorithms such as speech and visual feature recognition. Transistor
level Spice simulations are used to demonstrate a 159x improve-
ment in the energy delay product when compared to conventional
architectures executing the same applications.

Categories and Subject Descriptors:C.3[Special-Purpose and
Application-Based Systems]:Real-time and embedded systems

General Terms: Performance, Design
Keywords: Embedded systems, Low power design, VLIW

1. INTRODUCTION

Traditionally, embedded computing was synonymous with the
use of highly energy efficient, but low performance processors and
micro-controllers for control and monitoring applications. The emer-
gence of super DSPs with ever increasing BDTI scores introduces
a new category of compute intensive embedded workloads. So-
phisticated applications such as speech recognition, visual feature
recognition, secure wireless networking, and general media pro-
cessing will define the architecture and performance requirements
of future mobile embedded environments. The need to deliver high
performance at low energy levels has resulted in increased special-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS 04, September 8-10, 2004, Stockholm, Sweden.

Copyright 2004 ACM 1-58113-937-3/04/0009 ...$5.00.

Address Address Address
Generator Generator Generator
X 2 X 2 X2

- i} i

PC Loop SRAM 0 SRAM 1 SRAM n
Unit
i1 i1]
1 Interconnect
u-Code /+/micro
Memory/ ¥ code

|-Cache,
Decode Stage

. Function
R Units
x8

Figure 1. Processor Architecture

ization in DSPs. Common tactics include static extraction of ILP
using VLIW techniques, specialization of the on-chip memory sys-
tem, software managed scratch pad memory systems, cache banks
which can be locked down under software control, bit-reversed and
auto increment addressing modes, etc. Two important themes have
emerged: a) improving the throughput of execution resources and
b) improving data delivery to those execution resources. This paper
will address the architecture of an on-chip memory system which
significantly improves the capacity to deliver data to execution re-
sources in a timely manner. It provides addressing mechanisms
which generalize the auto increment or vector oriented addressing
modes commonly used in processors. The strategy results in radical
performance improvements in loop intensive algorithms.

A set of ten algorithms from the speech recognition, computer
vision, encryption and signal processing domains are used to eval-
uate this work. These algorithms tend to be stream oriented with a
large number of 2D array and vector accesses per elementary op-
eration. Hardware performance counter based measurements on
a MIPS R14K processor showed that 32.5% (Geometric mean) of
the executed instructions were loads and stores. Since this RISC
processor does not have auto increment addressing mode, assum-
ing that there is at least one address calculation instruction for each
load and store, it may be seen that 65% of the instructions are re-
lated to array accesses in one form or another. Amdhal’s law there-
fore argues in favor of accelerating these patterns.

2. HIGH LEVEL ORGANIZATION

Figure 1 shows the internal organization of a VLIW processor
used to evaluate this research. It consists of a set of clock gated

function units, a loop unit, multiple software managed dual ported
SRAMs and associated address generators (one for each SRAM
port), local bypass paths between neighboring function units as
well as a cluster wide interconnect.

Traditional processors have a limited number of load/store ports
and this limits overall performance and data availability. To effi-
ciently feed data to function units a large number of SRAM ports
are required. Increasing the number of ports on a single SRAM
or cache degrades access time and power consumption. The tra-
ditional solution is banking which motivates our choice of multi-
ple small software managed scratch SRAMs. It is also possible to
power down SRAMs which are not required.

To improve operand delivery, an address generator is attached to
each SRAM port. Load/store instructions decoded from a VLIW
instruction bundle are directly issued to the address generators by
the decode stage of the processor. The address generators work in
tandem with a VLIW execution unit called the loop unit. All branch
and loop related instructions are dispatched to it. Several loop count
registers and a semi-autonomous state machine maintained within
this unit mirror the loop counts of multi-level nested loops running
on the processor. Loop parameters including the program counter
value at which the loop body starts, start, increment and termina-
tion counts etc. are configured into the unit by the compiler before
entering a loop intensive section of the application. Thereafter the
loop unit works autonomously. Every time the program counter
passes the first instruction of a loop body, the corresponding loop
count is automatically incremented. The loop count values are used
by the address generators. Prior to entering a loop intensive sec-
tion of code, the start address, lay out and access pattern of arrays
used within that section of code is configured into each address
generator by the compiler. Once the loop body is started, the ad-
dress generators use the loop count values along with access pattern
information to autonomously generate addresses for load/store in-
structions. This distributed address calculation leads to high data
availability and efficient SRAM port utilization. While the scheme
itself is relatively simple, complications arise from additional func-
tionality required in the loop unit and address generators to deal
with software pipelining and modulo scheduling as well as offering
a level of generality in address generation.

While this loop acceleration method is evaluated in the context
of an energy efficient scratch-pad memory system, the method is
equally applicable to a multi-bank cache. The only difference is
that in the case of a scratch pad memory, physical indices into the
memory are used as array variable addresses while in the case of
a cache, the address generators work on logical addresses which
should then pass through tag lookup. In either case it is possible
to localize data structures to just one SRAM bank or to stripe data
across multiple banks. In the case of striped data, the compiler
configures each bank separately. The loop unit uses the program
counter value to increment loop count registers rather than incre-
menting them with a periodic timer. Hence the loop unit is immune
to stalls caused by cache misses.

Any VLIW processor which uses the proposed loop acceleration
mechanism needs four new instructions. A single cycle write_context
instruction transfers loop parameters or data access patterns en-
coded as a single 32-bit word into context registers within the loop
unit or the address generators. The instructions load.context and
store.context are enhanced versions of load/store instructions that
use our address generation mechanism. Two fields named con-
text_index and modulo_period are packed into the immediate con-
stant field of these instructions. Context_index controls address cal-
culation by selecting an address generator and a context register
within that generator that describes an access pattern. Finally a

push_loop instruction is used by the compiler to inform the hard-
ware that a nested inner loop is being entered. As explained in
Section 2, the PC value may be used to find when a particular loop
is being entered. But for an n level nested loop this requires n com-
parators. With this instruction we are able to take advantage of the
strict nesting of loops and compare the PC only against the instruc-
tion range of the innermost loop.

3. ARCHITECTURE

The loop acceleration technique will be evaluated on two pro-
cessor configurations, a VLIW integer core and a VLIW floating
point core both of which follow the generic organization shown in
Figure 1. Both processors are designed for a 0.13u CMOS pro-
cess and operate at 1 GHz, 1.6 volts. The Verilog and Synopsys
MCL HDL netlist for these domain specific CPUs optimized for
speech recognition and vision were automatically generated from a
configuration description using a netlist compiler tool we have de-
veloped. Since the loop acceleration technique is applicable to any
VLIW processor, the details of the processor implementations will
be omitted in this paper. Details may be found in [5].

For this study, both processors issue 8 instructions per cycle and
use identical scratch-pad memory systems. The scratch-pad mem-
ory consists of 3 dual ported SRAM s of sizes 8KB, 8KB and 2KB.
This choice is motivated by the nature of our applications which
depend on processing blocks of input, refer to some local state ta-
bles and produce blocks of output. There are a total of 6 address
generators and a loop unit in each processor.

3.1 Loop Unit

The index expressions of array accesses in a multi-level nested
loop will depend on some subset of the loop variables. The purpose
of the loop unit is to compute and maintain the loop variables re-
quired for address generation in the memory system while the loop
body is executed in the function units. Figure 2 shows a simplified
organization of the loop unit.

In this implementation, the loop unit can keep track of four levels
of loop nest at a time which is sufficient for our applications. For
larger loop nests the address expressions that depend on additional
outer loops may be done in software as in a traditional processor.
A four entry loop context register file holds the encoded start and
end counts and the increment of up to four inner most for loops.

The loop unit offers hardware support for modulo scheduling,
a software pipelining technique which offers high levels of loop
performance in VLIW architectures [6]. A brief introduction to
some modulo scheduling terminology is necessary to understand
the functioning of the loop unit. Assume a loop body which takes
N cycles to execute. Modulo scheduling allows starting the execu-
tion of a new instance of this loop body every Il (Initiation Interval)
cycles where 11 is less than N. A normal loop which is not modulo
scheduled may be considered a modulo scheduled loop with I1=N.
How Il is determined and the conditions that must be satisfied by
the loop body are described in [6]. The original loop body may
be converted to a modulo scheduled loop body by replicating in-
structions such that every instruction that was originally scheduled
in cycle nis replicated so that it also appears in all possible cycles
(n+ixI11)%N where ¢ is an integer. This has the effect of pasting a
new copy of the loop body at intervals of Il cycles over the original
loop body and wrapping around all instructions that appear after
cycle N. If a particular instruction is scheduled for cycle n, then
n/II is called its modulo period. The compiler configures static
parameters including Il and loop count limits into loop context reg-
isters. The corresponding dynamic values of the loop variables are
held in the loop counter register file. The only other piece of infor-

current loop Loop Stack - Eﬂgmggp
2b (from opcode)

start_count

] A\ /

P o5

B T CountReg J+<®%" write | 0OP Count
enable Register
Loop i 4b 4
Contexts 1

= current
loop

{loop_type, I, .
increment
start_count, end_count l_
end_count, -
increment } +
9b next

count

Figure 2: Loop Unit

mation required is which loop body is currently pointed to by the
program counter. A four entry loop stack captures this information.

Prior to starting a loop intensive section of code, loop parameters
(perhaps dynamically computed) are written into the context regis-
ters using write_context instructions. On entry into each loop bodly,
a push_loop instruction pushes the index of the context register for
that loop on to the stack. The top of the stack thus represents the
current loop body. Whenever the program counter is incremented
an Il counter is also incremented. This register counts up to the
initiation interval and then resets itself. Every Il instructions, the
loop increment is added to the loop variable that is held in the loop
counter register file. When the end count of the loop is reached,
the inner most loop will have completed. The top entry is auto-
matically popped off the stack and the process is repeated for the
enclosing loop. Note from Figure 2 that the registers and datapaths
have small widths of 4 and 9 bits that cover most common loops.
Loops which don’t fit this size can always be handled by additional
software. The reduced bit widths reduce energy for the common
case.

3.2 Stream Address Generators

Address computations for array and vector references issued to
an SRAM port are handled by its attached stream address generator.
The operation of the address generator depends on the loop unit
counters and array parameters like base address and row size that
are stored in its address context register file. Figure 3 shows the
internal structure of an address generator.

To understand how this simple structure can accomplish a va-
riety of address calculations, it is essential to understand how a
compiler generates addresses for array references. Consider the
2D arrays declared and used in C as shown in Figure 4. To sim-
plify the discussion, we will assume word oriented addressing. Let
the size of the Complex struct be denoted as elem_size. Then,
the size of one row of A is row_size = elem_size x N. If
the offset of imag within the struct is 1 and the base address of
A is Basea, then the base addresses of the imag field will be
Baseimag = Basea + 1. So the address expressions correspond-
ing to the load into ¢1 is Baseimag + i ¥ row_size + j xelem_size
since C stores arrays in row major order. A vector is a single
dimensional array, so its address expression is just a special case
where row_size = 0. For more complex index expressions of the
form P x4+ Q, the factors P, @ may be absorbed into the row size
and base address respectively. A column-walk of the form A[4][7]

Context reg Loop Counters Loop Counters
from opcode i 9b * ! ‘ ‘#
period fro Opcode
Address 4b opcode const
Contexts
const_sel
%270 %

{i_sel, j_sel,const_sel,

alu_sel, x, y, << |e=x Yy;y ALU
Base address } 4b address

Clock Base
Enable address +13b alu_sel
1’1 3b

Pipeline Reg bb Pipeline Reg }|————p Pipeline Reg
[

13b * 13b
Address ¥ 13b

Figure 3: Stream Address Generator

can be evaluated similarly. By constraining the row and element
sizes to be a powers of two, the address expression reduces to the
form address = Base + ((i << z)|(j << y)).

For cases where row size cannot be a power of two, to help pack
more data into the scratch memory, row size may be picked as the
sum of two powers of two and separate expressions may be used
to access the bulk of the array and the residue. For arrays with
n > 2 dimensions, the base address is repeatedly recalculated to
account for n—2 dimensions and the last two levels of loop nest are
supported by the hardware. Not all array accesses need to use the
same loop variables. In the example, the access of B depends on
1, k unlike A which depends on 7, j. The address generator selects
the correct loop variables to be used for address expression.

Each address generator has a designated partner ALU in the clus-
ter with several address generators possibly sharing the same part-
ner. In cases where the address generator can not compute the array
index function, it is possible to directly issue an address computed
by its partner ALU. The partner ALU can also compute address
contexts on the fly and reconfigure an address generator. The com-
bination of an address generator and its partner ALU can effectively
deal with indirect access streams of the type A[B][:]]. Address gen-
eration adds 1 cycle latency to load/store operations.

Before entering into a loop intensive section of code, the com-
piler uses write_context instructions to write descriptions of array
access patterns into the address context register files of address
generators. For increased throughput the same access pattern may
be written into multiple address generators attached to the same
SRAM. Each address context includes the row and element sizes,

struct Conplex AIN[M;
struct Conplex B[N [K];
for(i=0; i<N, i++) {
for(j=0; j<M j++) {
t1 = Ali][j].imag;
for(k=0; k<K; k++) {
t2 = B[i][k].real;

Figure4: Array Access Example

the base address as well as the loop counter indices that correspond
to the arrays loop variables. In this implementation there are four
context entries in each address generator which support 24 simulta-
neous access patterns. Since write_context is a single cycle opera-
tion, dynamic reconfiguration has very low overhead. The parame-
ters for an array access pattern are packed into a single 32-bit word
with the base address at the Ish. Arithmetic can then be done on the
packed word to update the base address dynamically.

When the compiler generates code for an array access, the index
of the address generator and the index of the address context regis-
ter within that generator are encoded into the immediate field of the
load/store instruction. The selected address generator then uses the
context index field to retrieve the array parameters from the context
register file as shown in Figure 3. The retrieved context entry spec-
ifies the loop variables to be used for calculating the address. The
muxes at the top right of the figure use this information to select the
appropriate loop variables. The shifters then shift the selected loop
variables and the result is O Red and added to the base address to
generate an address. To improve cycle time, pipeline registers have
been inserted just before the final add operation.

Several special cases are handled in the address generator. It is
common to unroll loops by a small factor and software pipeline
them for performance. In that case, instead of using 2 loop vari-
ables, it is possible to use one loop variable and one unroll factor to
compute the address. The unroll factor is packed into the immedi-
ate field of the instruction and selected in lieu of the loop variable
using the upper 2x1 mux in the figure. When the access pattern
is too complex to be handled by the address generator, the lower
2x1 mux selects an address that is computed by an ALU. To handle
vectors and ALU generated addresses with one or zero loop vari-
ables respectively, the loop unit has a special loop counter which is
always zero.

3.3 Array Variable Renaming

Setting the modulo period field in load.context/store.context in-
structions to a non-zero value unlocks a performance enhancing
feature we call Array Variable Renaming. Modulo scheduling makes
it is possible to overlap the execution of multiple instances of the
inner loop body. Assume that k loop from our example has a la-
tency of 30 cycles and that after satisfying resource conflicts and
data dependences it is possible to start a new copy of the loop body
every 5 cycles. Then, up to 6 copies of the loop body could be in
flight through the execution pipeline. To get data dependences cor-
rect for new loop bodies, the loop variable should be incremented
every 5 cycles. However, when it is incremented, old instances of
the loop body which are in flight will get the wrong value and vi-
olate dependences for load/store instructions that happen close to
the end of the loop body.

The traditional solution is to use multiple copies of the loop vari-
able in conjunction with the VLIW equivalent of register-renaming:
a rotating register file. Multiple address calculations are performed,
the appropriate values loaded into the register file and the register
file is rotated. For long latency loop bodies with short initiation in-
tervals, this leads to increased register pressure. Our solution to this
problem is to increment a single copy of the loop variable every ini-
tiation interval and compensate for the increment in older copies of
the loop body which are in flight. The compensation factor, which
is really the modulo period, within which a load/store instruction
belongs is encoded into the immediate field of load/store instruc-
tions. It may be thought of as a compiler generated tag attached
to load/store instructions. It is subtracted from the loop variable’s
value to cause dependences to resolve correctly. In effect, this has
the effect of rotating the array variable and letting a generic expres-

sion like A[¢][] be re-bound to separate addresses. Array variable
renaming, permits using the entire scratch pad memory as a rotating
register file with separate virtual rotating registers for each array in
the program. This allows removes the need for a register file in our
processor. The result is very high throughput while consuming low
power.

3.4 Addressing Modes

The address generator can directly compute array references of
the form Afi « P 4+ Q][j * R+ S]. field and vector accesses when
both loop variables are nested loops, when one loop has been un-
rolled, and more importantly when the inner loop has been modulo-
scheduled. For higher dimensional arrays, the base address is re-
peatedly re-computed using an ALU and the last two dimensions
are handled by the address generator.

Another important access pattern is indirect access of the form
A[BJi]]. Itis a common ingredient of neural network evaluation.
It is also a generic access pattern — any complex access pattern
can be pre-computed and stored in B[] and used at run-time to
access the data in A[]. For example we are able to implement bit-
reversed addressing for FFT using this mechanism. By passing an
ALU generated B[] address through the adder in Figure 3 thereby
offsetting it with a base address we provide indirect vector access.

The ALU address can be computed or it can be streamed into
the ALU from SRAM by another address generator. Using two ad-
dress generators and an ALU, complicated access patterns may be
realized with high throughput. The stream address generator effec-
tively converts the scratch-pad memory into a vector register file
that can operate over complex access patterns and even interleave
vectors for higher throughput. In a sense this unifies the vector and
VLIW architecture styles.

4. EVALUATION

The approach is tested on ten benchmarks that were chosen both
for their importance in future embedded systems as well as for
their algorithmic variety. In order to compare our approach to the
the competition, four different implementations are considered: 1)
Software running on a 400 MHz Intel XScale embedded proces-
sor. 2) Software running on a 2.4 GHz Intel Pentium 4 processor.
We note that the Pentium 4 is not optimized for energy efficiency
but more efficient processors can not currently support real-time
perception tasks such as speech recognition. 3) A micro-code im-
plementation running on our VLIW architecture. 4) Four of the
benchmarks are compared to custom ASIC implementations.

41 Benchmarks

The first two algorithms called GAU and HMM are dominant
components of several speech recognizers. Together, they consume
99% of the execution time of the CMU Sphinx 3.2 speech recog-
nizer [4, 5]. Fleshtone, Erode and Dilate, are used for image seg-
mentation in a visual feature recognition system [5]. Rowley is a
neural network based face detector [7]. Viola is a wavelet based
face detector [8]. FFT, FIR and Rijndael represent the DSP and
encryption domains. These were added to test the generality of
our approach. FFT implements a 128 point complex to complex
Fourier transform on floating point data. The cluster implementa-
tion uses a simple radix 2 algorithm. The software version on the
Pentium uses FFTW, a highly tuned FFT implementation which is
believed to be one of the fastest in the world. FIR implements a
32 tap finite impulse response filter. Rijndael, the AES standard is
used here to encrypt 576 byte Ethernet packets using a 128 bit key.
Rowley, GAU, FFT and Fleshtone are floating point intensive. The
remaining benchmarks are integer only computations. Some com-

ponents of GAU, Rowley and Fleshtone may be vectorized while
the rest of the algorithms cannot. HMM is intensive in data depen-
dent branches which may be if-converted.

42 Metrics

Two important metrics used in this evaluation are throughput and
the energy consumed to process one block of input. The trade off
between energy consumption and performance is a common mod-
ern design choice. Increasing performance almost always involves
increasing the energy requirements. As a result, it is misleading to
compare solely on the basis of either energy or performance. Gon-
zalez and Horowitz show that a good metric of architectural merit
should be based on the rate of work per energy or the energy delay
product [3]. Both architecture and semiconductor process influence
the energy delay product. Since the feature size of the process, A,
has a large impact it is necessary to normalize designs to the same
process for comparison. Under the assumption of constant field
scaling energy, delay and energy-delay product scale as A3, X and
* respectively [9]. Since our VLIW processors and the Pentium 4
are both implemented in a 0.13x CMOS process, the data for these
systems is not scaled. The XScale is implemented in a 0.18 pro-
cess. Hence all XScale numbers are scaled to give it the advantage
of a better CMOS process.

\l R14K @ Perception Proc MEM IPC & Perception Proc EX IPC \

IPC

Figure5: IPC

4.3 Experimental Method

This evaluation is based on a 0.13x hardware design of our clus-
ter operating at 1 GHz, 1.6 v. The design is simulated at the tran-
sistor level using Spice (Synopsis Nanosim) and the 0.13u BPTM
transistor models provided by the Device Group at UC Berkeley.
Spice provides a supply current waveform which is used to com-
pute instantaneous power consumption. Numerical integration of
power over time provides the energy consumption. The SRAMs
are generated as macro-cells by a CAD tool. Simulating the en-
tire SRAM array using Spice is not feasible. For SRAMS we log
each read, write and idle cycle and compute the energy consump-
tion based on the read, write and idle current reported by the SRAM
generator. Each benchmark is run for several thousand cycles until
the energy estimate converges. Netlists have clock trees and pes-
simistic heuristic wire loads incorporated.

100.07
[m XScale mPentium 4 @ Perception Processor BASIC | ;f
o
(3]
10.07
~
E |8 . s =
8 / 7 7
z) N
= % n
/ r
/ "B
% s
/ An
% 1y
0112 % v
/ v
A al
% Al
A 1
% Al
1 n
’ A N B
& <<\v\<>"& & Q.o&\eﬁ &’&e (é\o& \2\@& 4@0 & &8

Figure 6: Throughput normalized to Pentium 4 throughput

For the XScale and Pentium experiments, circuit boards were
modified to permit a current probe and a digital oscilloscope to
measure average processor current. These changes isolate the pro-
cessor power consumption from other components. Both the Pen-
tium and XScale systems were chosen to permit these modifica-
tions. Additional comparison against a DSP system would be desir-
able, but no system suitable for such PCB modification was found
to date.

The XScale does not have floating point instructions required for
some of the benchmarks. The comparison is therefore made against
an ideal XScale which has FPUs with the same latency and energy
consumption as an integer ALU. This is done by replacing each
floating point operator in the code with a corresponding integer op-
erator. The computed values are meaningless, but the performance
and energy consumption represent a lower bound for any real im-
plementation with FPUs.

5. RESULTS

The loop accelerator and scratch-pad memory design focused on
the need to provide high operand flow to the function units. This
improves function unit utilization and IPC. Figure 5 shows the IPC
of the cluster compared against the IPC measured using perfor-
mance counters on a MIPS R14K CPU. Our VLIW processor vastly
outperforms the the out of order processor and the highly optimiz-
ing SGI MIPSPro compiler. The mean® IPC of the processor is 3.3
times that of the competition. A large fraction of this performance
advantage is due to the on-chip memory subsystem.

Sufficient throughput to meet real time performance is impor-
tant for stream computations. Figure 6 shows the throughput of the
various implementations. Throughput is defined as the number of
input packets processed per second. The numbers are normalized
to the throughput of the Pentium 4. Our VLIW architecture out-
performs the Pentium 4 by a factor of 1.75 and achieves 41.4% of
the ASIC’s performance. The real advantage of the architecture be-
comes apparent in Figure 7 where it may be seen that this through-
put is achieved at energy levels that are on average 13.5 times better
than the XScale.

LAll references to mean and average imply the Geometric Mean

le+017
e \IXScaIe O Pentium 4 zPerception Processor mASIC \
o o
— Pl Q@
1e+007] moog 2 3 &
F! < d ©
- <) P @
o N < N
@ o N 3
P - S < a IN] 7
S o a ¢ 7o & ;
2 1e-017S 3 S o 3 b d g
S d d < d S o "
S
) 3 g ©
2 1c02 | § S o 8| S - B
0 o) ~cn o™ N ol ﬁ.
2 o . 11
e - > e~
1504 h=0: 0.0 -
<l b VAl h: s U =0 =
1le-03 7 7 7 =4 N L > 1 = <
ARl IV o B el s
A A3 AEEEE A
/- /- / / /- 73 S /- / /
AL P00)
& qp*@ F &S &S

Figure 7: Process Normalized Energy Consumption

Figure 8 shows that the cluster architecture improves the energy
delay product over the Xscale on average by 159 times and is only
12 times worse than an ASIC implementation. Note that the last
three graphs use a log scale for the Y axis. The radical improve-
ments in energy and performance suggests that when high perfor-
mance, programmability and low energy levels are crucial, a loop
accelerated VLIW architecture is an attractive alternative to general
purpose processors and ASICs.

6. RELATED WORK

Banakar et al. have demonstrated the advantages of scratch-
pad memories as a power saving mechanism [1]. Processors like
the IBM Elite DSP include vector extensions that can operate on
disjoint data, but do not possess the level of autonomy our dis-
tributed address generation mechanism provides. The Reconfig-
urable Streaming Vector Processor targeted at low power multi-
media systems implements hardware acceleration for base-stride
vectors [2]. Vector register files possess a limited amount of auton-
omy in address generation, but the scheduling is completely done in
hardware and is therefore inflexible. Our method is not only more
general than vector processing, but also amenable to compiler in-
struction scheduling since we use enhanced scalar loads in conjunc-
tion with a VLIW architecture. High performance DSP processors
provide bit-reversed addressing modes and auto increment instruc-
tions. The methods described in this paper are significantly more
general in the access patterns they can deal with.

7. CONCLUSIONS

Adding a distributed address generation and loop acceleration
mechanism to a VLIW processor has been shown to have consider-
able benefit both in terms of power and energy consumption. The
architecture has been evaluated for important classes of future em-
bedded applications like speech recognition, vision and cryptogra-
phy. This approach has a number of advantages: the approach pro-
vides performance and energy efficiency that is close to an ASIC
while avoiding the costs of an ASIC and retaining most of the gen-
erality of a general purpose processor approach;, it achieves an
energy-delay product that is 159 times better than an idealized Intel

1e+03

\ m XScale @ Pentium 4 z Perception Processor BASIC \

8
1e+02 8 o3
n o3 oo
? >
? 1e+0119 $= S oo
o T = o5 oF 88
g 3 g &N o
5 16400 @ e
E e B g
B N N 30 d%)
E 1e-01 =} 3 o~ cﬁ (%) -
3 B (| U /
[} r L 2l [} < 7
o102l B2 B > = N
> 1 1::0 o
s 1 10 =0 -0 ~R
2 1 1 1 0E AL
@ 1e-03 é é é =5 é % < é é
1 A0 =0 1 ‘07 0 AR
1.Lha.1.0.0 .00
100810000
S VI N3N I (a0 EEERE
774 B N7 7 7 Vi Wk AN 7
HIAV I IVAVANYARIALR |V
AN (I dNdednde |y
E @ TP g

Figure 8: Process Normalized Energy Delay Product

XScale processor while delivering 1.75 times the performance of a
Pentium IV system; it makes sophisticated perception applications
possible in real-time within an energy budget that is commensurate
with the embedded space.

8. REFERENCES

[1] R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and
P. Marwedel. Scratchpad memory : A design alternative for
cache on-chip memory in embedded systems, 2002.

[2] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris,
M. Schuette, and A. Saidi. The reconfigurable streaming
vector processor (RSVPTM). In Proceedings of the 36th
Annual |EEE/ACM International Symposium on
Microarchitecture, page 141. IEEE Computer Society, 2003.

[3] R. Gonzalez and M. Horowitz. Energy dissipation in general
purpose microprocessors. |EEE Journal of Solid-Sate
Circuits, 31(9):1277-1284, September 1996.

[4] X.Huang, F. Alleva, H.-W. Hon, M.-Y. Hwang, K.-F. Lee, and
R. Rosenfeld. The SPHINX-1I speech recognition system: an
overview. Computer Spoeech and Language, 7(2):137-148,
1993.

[5] B. Mathew. The Perception Processor. PhD thesis, School of
Computing, University of Utah, May 2004.

[6] B. R. Rau. Iterative modulo scheduling: an algorithm for
software pipelining loops. In Proceedings of the 27th Annual
International Symposium on Microarchitecture, pages 63-74.
ACM Press, 1994,

[7]1 H. A. Rowley, S. Baluja, and T. Kanade. Neural
network-based face detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(1):23-38, 1998.

[8] P. Violaand M. Jones. Rapid object detection using a boosted
cascade of simple features. In |[EEE Computer Society
Conference on Computer Vision and Pattern Recognition,
Dec. 2001.

[9] N. H. E. Weste and K. Eshraghian. Principles of CMOSVLS
Design, A Systems Perspective. Addison Wesley, second
edition, 1993.

